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WEIGHTED-RESIDUAL METHODS IN
SPACE-DEPENDENT REACTOR DYNAMICS

by

Edward L. Fuller III

ABSTRACT

This work is a study of approximate methods for the solution of
problems in space-dependent nuclear-reactor dynamics. It is shown that
these approximate methods can all be thought of as applications of the
method of weighted residuals. In each method, a trial solution is formed
for the neutron flux. The trial solutions are expansions in known spatially
dependent functions called trial functions. Each approximate method differs
from the others in the manner in which its trial functions are chosen. The
undetermined time-dependent functions, called amplitude functions, are then
found by using the weighted-residual procedure known as the method of un-
determined functions to derive the so-called multimode kinetics equations,
which are first-order, ordinary differential equations in time. The multi-
mode kinetics equations are then integrated using the method ofundetermined
parameters.

An iterative method, which uses the method of undetermined func-
tions for both spatial and temporal integrations, is described. It eliminates
the need for choosing accurate trial functio?s because it finds a solution
which is independent of the initial choice of trial functions. A simple ex-
ample is solved to illustrate the method. Several possible applications of
the method are indicated.

Some numerical results are reported for continuous-synthesis and
multichannel-synthesis approximations. Several choices of weighting func-
tions are compared. Conclusions are drawn regarding the roles of the trial
functions and the weighting functions in obtaining accurate solutions.

CHAPTER I
INTRODUCTION

A. Dynamic Problems in Nuclear Reactors

In the analysis and design of large nuclear power reactors, knowl-
edge of the spatial and temporal behavior of the neutron flux is essential.
Localized changes in material compositions, suchas control-rod withdrawals,
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i i 1 e
cause changes in the neutron-flux shape which contribute to changes in thot
power level. For this reason, the traditional point-reactor model does 21
adequately describe the transient behavior of either large fast or therm

reactors,

At least four areas of transient analysis can be distinguis}.led. They
are reactor safety studies, analysis for design and routine operatlofl, anal-
ysis of xenon oscillations in thermal reactors, and fuel-cycle.s studl.es,
Each problem area differs from the others in that each has w1d.e1y different
characteristic transient times, which range from milliseconds in severe
accident-induced transients to months in a fuel-management program.

Safety studies are directed toward investigating transients initiated

by changes in material composition. Knowledge of the response of a reac-

tor to a wide variety of changes can improve the safety of the reactor:

Since accidents cannot be predicted beforehand, the prevailing philosophy

of reactor safety is to imagine possible severe accidents, analyze them,

and design to prevent them as far as possible. Some effects of serious acci-
dents are fuel-element rupture, loss of coolant flow, and core meltdown. If
the space-time behavior of the neutron flux is calculated accurately when
analyzing possible accidents, the effects mentioned above could be prevented
by designing the reactor properly. Accident analysis is emphasized in the
numerical examples of Chapter VIII.

An operating power reactor must routinely satisfy demands for
power increases. The power level is adjusted by moving control rods with-
in the reactor. The control-rod movements, which take place over a period
of minutes, cause the flux shape to change as the power level changes. The
relationships between a control-rod movement and the corresponding flux
shape and power-level changes must be properly accounted for in the reac-
tor design.

Xenon oscillations in thermal reactors generally occur with char-
acteristic periods of hours or days. A flux increase in a localized region
of a large thermal reactor causes the concentration of the poison °Xe to
increase in that region. As the xenon concentration builds up, the neutron
flux decreases in the region relative to the flux in adjacent regions. Since
the total power demanded from the reactor remains the same, the flux in
the adjacent regions increases still further to meet the demand. The xenon
concentration in these regions now increases while decreasing in the origi-
nal region of increase. The xenon concentration thus has a characteristic
period of oscillation. Since the oscillation could be unstable, it should be

controlled.

Fuel burnup is usually allowed to take place for many days before
replacement or rearrangement. In planning an optimum fuel management
program, one should know the spatial effects of fuel burnup.



Each of the four classes of problems described above can be solved
using the space-energy-time-dependent neutron transport equation and the
balance equations for the delayed-neutron precursors. In practice, though,
one of the approximations to the transport equation is used, such as multi-
group diffusion theory. In addition, each type of space-time problem has its
own characteristic "feedback" effects. An accident could be initiated by
sodium voiding in a fast reactor, and then limited by Doppler feedback, which
is a nonlinear phenomenon. A xenon oscillation problem uses a balance
equation for the xenon concentration. Isotope balance equations are needed
in fuel-burnup studies.

The time scales for each problem type are so vastly different that
they can be considered independently from one another. The methods that
will be subsequently discussed are applicable to each type of problem,
although the focus on detail differs from one application to the next. For
example, delayed neutrons are neglected in a fuel-cycles study. Conversely,
changes in isotope concentrations are neglected in safety studies.

B. The Time-dependent Multigroup Diffusion Equations

In Section A above, it was noted that the time-dependent multigroup
diffusion-theory approximation is often used to solve the space-time prob-
lem. In this approximation, the energy variable is discretized into G dis-
tinct energy groups, and the resulting system of equations is then written
in the compact form!

-1%’ i ~ . T i J -
L (r,t) = [V'DV- A+ (l-B)pr ]¢£r,:) +j§=jl xjxjnj(r,:). (1:1)
Binray " i
XJ (r,t) = ﬁjFTda(r. t) - Xjnj(r. t). (1.2)

In Eqs. 1.1 and 1.2, the group fluxes are represented by the column vector

®1(;,t)
U Rk e s (1.3)
d)G(r. t)
the precursor concentrations by the functions 'r)j(;, th Q= 1, L dnaod the

neutron speeds by the diagonal matrix
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=

(1.4)

1

e
The macroscopic diffusion coefficients are represented by the diagonal
matrix

D,
(1.5)

the macroscopic absorption and scattering cross sections appear in the

G x G matrix

5 [y
A= B3 (1.6)
6 | |26 - Zaa
The fission cross sections appear in the column matrix
Vg
Fo| . (1.7)
VEgg

FT is the transpose of F and is thus a row matrix.

To a reasonable approximation, the emission spectrum of prompt
neutrons is represented by the column matrix

(1.8)
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the emission spectra of the delayed neutrons are given by

Xj1
Xj = > s 35X o0i (1.9)
XjG
The precursor decay constants and the delayed-neutron fractions are )\j
and Bj' j =1, ..., J, respectively; the total delayed-neutron fraction is
J
B =2 Bj- (1.10)
J=1

The system of equations represented by Eqs. 1.1 and 1.2 is generally
far too complicated to solve without resorting to numerical and/or approxi-
mation techniques. In fact, even a direct numerical solution on a high-speed
computer is impractical if more than one space dimension and/or more than
a few energy groups are used. The only hope in obtaining solutions to the
full space-energy-time-dependent problem seems to lie in the development
of good approximation techniques. Some of these attempts will be described
next.

C. Approximate Methods for the Space-Time Problem

The numerical methods, such as finite-difference methods,? have
traditionally been poor choices for reactor*dynamics. The V~! matrix,
which multiplies the time derivative of the flux column vector, contains
elements that are very small. Because of this, very small time steps must
be taken to ensure a stable solution. Computation becomes very time-
consuming, even for relatively simple cases.’> Consequently, more economical
approximate methods have been developed, which have varying degrees of
accuracy.

The improved temporal integration techniques can be divided into
two classes: those that minimize the finite-difference time-step limitation,
and those that overcome it. Examples of the former are the so-called
Theta-difference method of Henry and Vota* and the "Streak" method of
Smiley.® Examples of methods that overcome the time-step limitation are
the exponential matrix approximations of Porsching,6 Hansen's largest-
eigenvalue method,””® Adler's method,® and the methods belonging to the
larger class known as the method of undetermined parameters, such as that
developed by Brittan'® and improved upon by Kaganove.!! The method of un-
determined parameters, being a weighted-residual method, is explored
thoroughly in this report. One essential feature common to all the methods
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that overcome the time-step limitation is that the equations are ff)rrnally
integrated with respect to the time variable.'? Then, slowly varying terms
of the integrands are approximated by trial solutions. The methods that
overcome the finite-difference time-step limitation are discussed further

in Chapter VI.

In addition to the development of improved techniques for c.arrying.
out the temporal integrations, approximations for treating the spatlal varis
ation of the flux have been propounded. These include the traditional point-
reactor model,'? in which the flux shape is assumed to remain constant
throughout a transient, the adiabatic method!* and its more sophisticated
cousin, the quasistatic method,'® the nodal methods, ¢ and the modal expan-
sion methods.!”"19 These methods are all closely related, as will be shown
in Chapters III, IV, and V. They all can be thought of as applications of the
method of weighted residuals®® to the time-dependent diffusion equations.

In the weighted-residual procedure, the flux is expanded into a lin-
ear combination of known spatially dependent functions called trial functions.
The approximate solution is then inserted into Eqs. 1.1 and 1.2. The result-
ing "residual" is then multiplied by appropriate weighting functions, and
spatial integrations are carried out to determine the time-dependent func-
tions. The method of weighted residuals is described in detail in Chapter IIL

The unification of the various methods that treat the spatial depen-
dence of the flux during a transient will not be made merely for pedantic
reasons. Reactor physicists have a genuine need to known which approxi-
mations are suitable for particular problems. Unifying the methods enables
the strengths and weaknesses of each to be assessed in a systematic man-
ner, Therefore, a major goal of this report is to show as precisely as
possible the similarities and differences among these weighted-residual
methods. The methods differ in principle from one another only in the
choices of the trial solutions.

Each method reflects, to a greater or lesser extent, all the funda-
mental advantages and limitations of trial-function methods. The methods
all attempt to use results previously found, i.e., the trial functions, to pre-
dict the solution to the problems to which they are applied. Their success
depends largely upon how carefully the trial functions are chosen. Experi-
ence and intuition are important factors in this respect. Furthermore,
great care must be taken to ensure that the intuitive knowledge is applied
only within the parameter range where it is valid. As of now, even the se-
lection of this parameter range is largely intuitive. Therefore, alternative
methods of solving the problems must remain available for checking pur-
poses. Direct numerical solutions, inefficient and time-consuming as they

may be, should provide this alternative.



Another goal of this report is to compare different types of weighted-
residual criteria in an attempt to determine the influence of the weighting
functions on the success of the approximations. Previous investigators??~%
of weighted-residual methods have assigned far more importance to the
choice of the trial functions than to the choice of weighting functions.
However, the influence of weighting functions on the accuracy of the approxi-
mate space-time solutions remains to be seen.

Chapter II contains an outline of the method of weighted residuals.
Chapter III contains a derivation of the multimode kinetics equations®®?*
using the method of weighted residuals. The multimode kinetics equations
are the set of first-order ordinary differential equations common to all the
approximate methods listed above. The point-reactor model and spatially
continuous modal-expansion methods are also discussed in Chapter III as
weighted-residual methods. The adjoint problemzs’“ and the correspond-
ing variational formulation are presented at the close of Chapter III.

Chapter IV is concerned with the possibilities for choosing spatially
discontinuous trial functions.?”’?® A technique known as multichannel syn-
thesis?’ is described, as are the nodal methods. Temporally discontinuous
trial functions®??? are discussed in Chapter V as choices to improve accu-
racy. The adiabatic and quasistatic methods are examples of this technique.

In Chapter VI, the multimode kinetics equations are integrated using
the method of undetermined parameters.’’ Piecewise polynominal func-
tions®! are chosen as trial solutions. Possible choices of weighting func-
tions are also presented. An iterative scheme,’? which uses the method of
weighted residuals, is applied to the space-time problem in Chapter VII.

A simple illustration is made, and indications are given as to how it can be
used with multichannel synthesis and temporally discontinuous synthesis.

Chapter VIII contains the results of some numerical studies along
with interpretations of them. Emphasis is placed upon the choice of
weighting functions when continuous trial functions are used. Also, nodal
methods and multichannel synthesis are studied. One-group diffusion theory
is used in all cases. Exact solutions are obtained with the computer pro-
gram WIGLE.?

Conclusions and recommendations for further study are made in
Chapter IX. Linear dependence is discussed in Appendix A. Appendix B
contains a description of the time-step halving procedure used to obtain
stable solutions of the multimode kinetics equations.

15
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CHAPTER II
THE METHOD OF WEIGHTED RESIDUALS

A, General Discussion

The method of weighted residuals is an appealing mathematical tool,
because of both its wide utility and its ease in formulation. It not only
handles the usual linear self-adjoint problems, but can also solve even the
most highly nonlinear and non-self-adjoint systems. Ehe resulting approxi-
mate solutions are more or less "good," depending upon the experience
and/or intuition of the human being using the method; this somewhat vague
statement will be made clearer below.

Consider a system of (generally) nonlinear partial differential
equations in several independent variables, represented by the vector x.

. . ;.20
This system of equations igeecti s

Ho(x) = £(x), (251

and

(#7)

where H(¢) is a nonlinear differential operator, ¢(x) is the vector of de-
pendent variables, f(x) and gi(x) are vectors containing functions of the
independent variables, and the Bj are operators representing the boundary

conditions.

The system of equations represented by Eqgs. 2.1 and 2.2 usually is
solved either numerically or approximately. To apply the method of weighted
residuals, an approximate solution is first sought in the form

$(x) = Yot Y Ay (2.3)

sl

The functions %, and 1//j are trial solutions, chosen beforehand. In principle,
these functions are arbitrary, but great care must be taken to ensure that
they are all linearly independent. They should also satisfy the boundary con-
ditions given by Eq. 2.2, preferably by choosing ¥, and ¥j such that

B (o)l =gt = e
and (2.4)
Bi(y;) =0, j=1..m

More will be said about boundary conditions in Section C of this chapter.
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The trial functions in Eq. 2.3 are generally functions of all or all
but one of the independent variables. The Aj are either undetermined
parameters or undetermined functions of one or more of the independentvari-
ables. Once determined, the Aj's will in turn provide an approximate
solution to Eqs. 2.1 and 2.2.

Since Eq. 2.3 is an approximation, it generally does not satisfy
Eq. 2.1. A measure of the extent to which ¢ satisfies Eq. 2.1 is given by
the equation residual R(A,¥), which is formed when Eq. 2.3 is substituted
into Eq. 2.1:

n
R(A,9) = f - HP = f-H<¢o+ZAj¢j>. (2.5)
j=

As the number of approximating functions increases, the residuals
decrease if the trial functions are "reasonable." If the residual is identi-
cally zero, the exact solution is one of the trial functions. If the residual
does not vanish, a reasonable alternative is to make it small in some sense.
The weighted-residual method provides this alternative. That is, n weighted
averages of the residual are set equal to zero:

fka dD=0, k=1, ...,n. (2.6)
D

The independent variables in D include all the independent variables upon

which the Aj do not depend.

If the A; are undetermined parameters, n algebraic equations re-
sult, which may be solved for the A;. When the A. are undetermined func-
tions, Eq. 2.6 yields n simultaneous differential equations. The method of
undetermined parameters is often called the direct method; the method of
undetermined functions is also known as the semidirect method, or-the
Kantorovich method.**

Allowing the weighted averages of the residual to vanish distributes
the errors over the entire range of integration. The errors are then said
to be minimized in a certain sense. This "sense" coincides with whichever
choices of weighting functions are made.

This closeness is strongly dependent upon the choice of trial func-
tions, and less strongly upon the choice of weighting functions. In general,
a good set of trial functions is obtained only by experience and by famil-
iarity with the type of problem to be solved. The choice of weighting func-
tions has been, in the past, more restricted. Several common types are
used. These will be described next.
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B. Weighted-residual Criteria

Far less emphasis has traditionally been given to the ch01t:e of
"good" weighting functions than to the choice of "good" trial functions.
Such a question as "Do the weighting functions satisfy the boundary con-
ditions ?" is often not even asked, because it is not clear whether or not
such a question is relevant. Nevertheless, there have been several attempts
over the years to compare different weighted-residual methods. NotaB.Ele
among these are the works of Bickley in 1941,% and Collings in 1961,
Bickley solved a linear partial differential equation analogous to the heat-
conduction equation; Collings solved both linear and nonlinear problems in
heat conduction. Both concluded that the Galerkin method of weighting
(described in Section B.5 below) gave better results than the other methods
used in their comparisons. Other investigatorszo’37’38 have also commented
on the apparent superiority of either the Galerkin method for self-adjoint
systems, or variational methods for non-self-adjoint systems. It must be
emphasized, however, that the results of these investigations do not con-

stitute universal proof.

The following is a list of the most commonly used weighted-residual

criteria,

1. The Method of Collocation?®:22:33

The residual R is allowed to vanish at n points, p = py, ..., Pp 1T
D. The weighting functions are the Dirac delta functions

W5 (pi= o 8 S IcE = s (287
k P

so that Eq. 2.6 becomes

f 6p-p ) RAD = R(p, ) = 0, k=1, ..,n (2.8)
D

Equation 2.1 is then satisfied exactly at the n collocation points. As n is
increased, the residual vanishes at more and more points and presumably
decreases throughout D. The points Py are generally chosen in a uniform
pattern.

2. The Method of Subdomains?2%:22:33

The domain D is divided into n distinct subdomains,
Dy, ..., Dy, which may partially overlap: The weighting functions are unit
functions in each subdomain; that is,
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wk(Dk) - lu
and (2.9)

TS XY

In this case, Eq. 2.6 becomes

Wk(Dj)

fRdD:O. k=1,.. n (2.10)
Dy

Equation 2.1 is then satisfied in an average manner in each of the n sub-
domains D, . As the number of subdomains increases, Eq. 2.1 is satisfied
in smaller and smaller regions, causing the residual to approach zero.

3. The Method of Least Squares??:22:3%39

The integral of the square of the residual is minimized with
respect to the undetermined parameters Aj:

i[?&dn:?. —aiRdD=0. Bt Romed s (2.11)
OAy D D 9Ak

The weighting functions are therefore

4L

——y e Ly cap B (2.12)
k © A, "

4. The Method of Moments?¥??

The weighting functions are given by
Wi =P(D), k=1,..n (2.13)

where the Py (D) are polynomials orthogonal to one another within D. When
these weighting functions are used, i.e., when

kaR db=0, k=1,..mn, (2.14)
D

the first n moments of R vanish. Often, in one space dimension, the choice

Wk(x) = k=1, .. n, (2.15)
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is called the method of moments, although these functions are not

orthogonal.

5. The Galerkin Method??2%:33

The weighting functions are the trial functions themselves, so

that Eq. 2.6 is

f $RAD =0, k=1,..,n (2.16)
D

If the trial functions are members of a complete set of functions, the
Galerkin method makes the residual orthogonal to members of this complete
set. If the operator H is linear, and if the residual R is orthogonal to
every member of the complete set, then the residual would be identically
zero. Thus, for this case, as the number of trial functions increases, the
residual tends to vanish, so that convergence is guaranteed. In practice,
however, convergence may be very slow. Currently, far more emphasis is
placed upon a pragmatic choice of suitable trial functions than upon con-

structing a complete set of functions.

6. Variational Methods3?:*°

"A variational description of a physical system consists of a
statement that the variation, or functional differential, of a specified func-
tional is equal to some fixed value, which can be and customarily is chosen
to be zero."*® This statement also implies that one or more "Euler
equations," along with their "natural boundary conditions" and initial con-
ditions, exist. If these equations and conditions match the system given by
Eqgs. 2.1 and 2.2, then the variational principle is an alternate way of
formulating the problem., The functional is then said to be stationary with
respect to arbitrary variations in the functions represented by ¢(x), and
with respect to whichever constraint conditions are present. (These must
also be accounted for in the functional.)

Once a variational principle has been found, the so-called
variational method can be used to effect an approximate solution to the sys-
tem. The variational method substitutes a trial solution into the functional
in the same manner as was done in the method of weighted residuals. In
fact, as far as the choosing of trial functions is concerned, variational
methods offer no greater insight than do weighted-residual methods. Indeed,
it is well known that, for self-adjoint systems, the Galerkin method is equiv-
alent to the variational method.??*°

A true variational principle yields additional information, which

weighted-residual methods cannot. The functional may represent a quantity
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of importance; variational methods approximate this quantity more
accurately than they approximate d>(§).

The adjoint function ¢t must appear in the functional when a
variational principle is formulated for a non-self-adjoint system.’® Fur-
thermore, the functional is not a true variational principle unless the
adjoint system can be formed when variations are taken with respect to ¢.
If the system is nonlinear, the variational principle must also be capable of
generating any auxiliary equations which may be causing the nonlinearity.

To illustrate the use of a variational principle, consider the

problern"9

H¢ - £ = 0. (2.17)
The following functional (which could possibly be physically important) can

be determined quite accurately by taking arbitrary variations with respect
to ¢t:

b
F =[ ¢t (Ho - f) dx, (2.18)
a

where ¢+ is the function that satisfies the adjoint equation
Higt =igko= 0; (2.19)

Now approximate ¢ by

1
™M

¢(3_‘) = Akwk(i) (2.20)
k=1
and ¢t by
o) = T Afvi. (2.21)
k=1

The variational principle
b
f s¢T(He-f) dx = 0 (2.22)
a

yields the set of equations
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b
f Yi(x) [HE(x)-£] dx = 0, k =1,..,m (2:23)
a

which in turn can be solved simultaneously to determine the Ax. Equa-

tion 2.23 is recognized as being of the same form as Eq. 2.6, where

Wi (x) = yf(x). (2.24)
Now, of course, the functions w}t(’i) must also be chosen before-

hand, as they are "trial functions" used in the approximate solution to the
adjoint problem, Eq. 2.19. These functions are commonly chosen to be the
same as the functions % (x), so that the method represented by Egs. 2.23
and 2.24 is identical to the Galerkin method. If the system is self-adjoint,
then A}t = Ay for all k; if the system is non-self-adjoint, then the coeffi-
cients will differ, and separate solutions to the real and to the adjoint
problem will be obtained. In either case, the functional F will be deter-
mined accurately if good trial functions are chosen. For the non-self-adjoint
system, the variational method is equivalent to solving two problems
simultaneously by using the method of weighted residuals. The trial func-
tions for the adjoint problem act as the weighting functions for the "physical"

problem, and vice versa.

C. Initial Conditions and Boundary Conditions

The approximate solution given by Eq. 2.3 will not, in general, sat-
1sfy the initial conditions in an initial-value problem. To obtain initial values
of the Aj, when they are undetermined functions of time, an initial residual
is formed, which is weighted in the same manner as the differential equation.
The initial values of A; then serve as initial conditions for the Aj(t) when

the method of undetermined functions is used.

Often the trial functions satisfy neither the differential equation nor
the boundary conditions. The boundary conditions should then be weighted
by the same set of weighting functions as the differential equation.* Surface
integrals should be carried out on these weighted boundary residuals, and
added to the differential-equation weighted residuals. The resulting
weighted residual is then allowed to vanish in the usual manner. The result-
ing equation, interestingly enough, looks much like the first variation of a
functional that has been used in a variational principle.

This technique of combining equation residuals and boundary residuals
is an invaluable way to treat systems of equations in which the equations
are related through boundary conditions! An outstanding example of a sys-
tem of equations that are related in this manner is the multigroup, multi-
region formulation of neutron-diffusion theory, in which the neutron fluxes



and currents are assumed to be continuous at interfaces between adjacent
regions. A detailed development is made in Chapter IV to obtain the
multichannel-synthesis formulation.

D. Some Observations on Accuracy

The motivation behind using a weighted-residual method, as opposed
to using another approximate method, such as Taylor-series expansions or
perturbation techniques, is to distribute the error as uniformly as possible
over the range of the independent variables.?’ Taylor-series expansions
and perturbation techniques yield highly accurate results near the initial
state, but may not work so well over most of the range. Weighted-residual
methods, being error-distribution principles, tend to sacrifice high initial
accuracy in order to obtain reasonable accuracy throughout. Unfortunately,
a proper choice of trial functions is essential, and the selection is not
always easy.

Another unfortunate circumstance is that realistic error bounds are
rarely obtained from weighted-residual procedures.Zz There are, however,
convergence theorems available for certain classes of problems."'“ Most
of these apply to the Galerkin method. However, even with the assurance
that a convergent solution will be obtained by decreasing the increment or
iterating indefinitely, the convergence may be so slow that the method be-
comes computationally impractical unless good trial functions are used.

- The usual way of testing a weighted-residual method is to apply it
to a problem whose exact solution is already known. If the errors are satis-
factorily small with a given choice of trial functions, then the method is
used, with the same set of trial functions, on other problems of the same

type.

E. An Iterative Technique to Improve Accuracy

Up to now it has been repeatedly pointed out that a proper choice of
trial functions is essential to the success of any weighted-residual method.
To overcome this weakness, Kerr3? developed a rapidly converging iterative
technique, which itself strongly uses the method of weighted residuals. This
technique extends the method of undetermined functions in a most ingenious
and logical manner.

When the trial solution given by Eq. 2.3 is postulated, where the Aj
are undetermined functions, the Aj are usually chosen to be functions of
only one of the independent variables, say x;. The trial solutions ¥; are
generally chosen to be functions of the remaining members of x; that is,

wj . Wj(Xz».-..xr) = '(l/;l(xz,...,xr)

23
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when

X5 (Xl, ...,xr).

A weighted-residual criterion will produce a set of ordinary dif-

ferential equations to be solved for the AJ(xl) Limited by the initial choice

of the sz s, the approximation nevertheless yields a solution that tends
toward the exact solution along the x; direction. Kerr decided that the so-
lution could be further improved along the directions of the remaining in-

dependent variables as follows:

1
After having determined the Aj(xl), relabel them as ij(xl) and let

1 2.25
v, (2.25)
where the ;D‘Z are also chosen beforehand. Equation 2.25 is substituted

back into Eq. 2.3, which becomes (neglecting %)

(k20 -n %) = Al () Y350, on ),

= % AL ()AL )Yk, o xp). (2.26)
=

—

To determine the A_]Z(XZ)’ use a weighted-residual criterion with respect to
(x1, e e ) ST he gl et

1 1
Wialas veerXe) = Ajyl) 055000, o my) (2.27)
Again, substitute Eq. 2.27 into Eq. 2.3, and use a weighted- residual Cri-
terion with respect to (x;, x,, , X4, ..., Xp-) to determine the A (X3)
This process is continued until all the functions AJ () o _]r(xr

have been determined. Then, the approximate solution is given by
- 1
1 1
2 A )AL, (xg). . Al (k). (2.28)
=1

At this stage, a second iteration is begun; the improved expressions
for A_]1(x1): now labeled AJ (x1), can be found by us1ng the n products
AJ1 (x)AY5(x;5)... r(xr) as "tr1a1 functions." Then, AJ (x,) are found, using
the products A 6 r(xy) as trial functions, and so on, until the
second 1terat10n has {)een completed At this point, the approximate solu-
tion is

Z Afaxa).. A% (xp). (2.29)
_]:l
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More iterations can be performed, but Kerr found that very few
cycles are needed to obtain a converged solution. In addition, and more
importantly, he showed that the final form of the generated solution is in-
dependent of the initial choice of the ¥:'s. The accuracy of the solution

depends only upon the choices of weighting functions and on the number of
trial functions chosen.

The advantage of choosing arbitrary trial functions is only at
the expense of increased computational effort. The iterative technique
could be time-consuming, even using a computer. In addition, there is still
some advantage to choosing reasonable trial solutions. Kerr has indicated
that by choosing trial solutions that satisfy the boundary conditions, he
could reduce the number of iterations needed for convergence. In summary,
the method is potentially very powerful and very accurate. The formulation
for the time-dependent diffusion equations is developed in Chapter VII.



CHAPTER III

APPROXIMATE SOLUTION OF THE TIME-
DEPENDENT DIFFUSION EQUATIONS

In this chapter, the weighted-residual method is used to solve the
time-dependent multigroup diffusion equations. In particular, the method
of undetermined functions is used to derive the set of equations known as
the multimode kinetics equations.! Then, the point-reactor model and
modal-expansion approximations are discussed within the framework of
this method. Finally, the adjoint probleml is formulated to show how a

variational principle can be used. The treatment is for a one-dimensional

slab reactor, both in this chapter and in the remainder of this report. Ex-
tension to different geometries and to more than one dimension is

straightforward.

A. The Method of Undetermined Functions

For a one-dimensional slab geometry, the multigroup diffusion
equations and precursor equations can be written as

a ai’(a’;_’t) - [V DOV - AGt) +(1-B) XpFTe0] 8(x.t)

J
o axem(Ge ) 3]
JZ; XJXJT)J(X ) ( )

and

on; i :
— (et) =" BF=Gotlebt) = agmybe e 1 RS (3.2)

where the meanings of the symbols are given by Egs. 1.3-1.10. The matrices
D, A, and FT can be functions of time. In fact, they could even be functionals
of the flux vector ¢(x,t). If so, the system would be nonlinear.

The method of undetermined functions proceeds by expanding the
group fluxes, given by Eq. 1.3, in the trial functions (or modes) ¥;(x,t),
as follows:

I
Blxt) = 3 YN, () = PlxEN(E). (3.3)
i=1 )

The bar over the flux vector indicates that Eq. 3.3 is an approximate so-
lution. The modes ¥;(x,t) are known as shape or trial f;lsnctmns; the unde-
termined functions Ni(t) are called amplitude functions.™ Most of the time



dependence is carried by the amplitude functions. The choice of the trial
functions is in principle arbitrary, except for the condition that they must
be linearly independent.

In Eq. 3.3, the modes wi(x,t) are chosen to be the column vectors
Yailx,t)

¥;i(xt) = G e (3.4)
’//Gi.(x,t)

and are combined to form the G x I matrix of trial functions %(x,t) in the
following manner:

[’l’l(x,t)...wl(x.t)]
Yulx.t) ... Yilxt)

Y(x,t)

prfserg wenno i
'¢G,.(x,t) wcx.(x.t)

Each amplitude function Nj(t) is a scalar function, so that N(t) is a column
vector of amplitude functions:

N, (t)
NW =] . (3.6)
NI'(t)

The next step is to substitute the approximate solution Eq. 3.3 into
Eqgs. 3.1 and 3.2 to obtain

V-ly(x,t) % = [v -D(x,t)V - A(x,t)+(1- B) XPFT(x.t) - v“%] Y(x,t)

J
+ z xjxjnj(x,t), (3.7)
j=1
and
— (x,t) = fstT(x.t)w(x,t)N(t) - Ajmj(x.t). (3.8)

ot

27
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The above expressions are not truly equations unless the exact solutl.on
happens to be contained within the approximate solution. The ap'proxufna i
tion is more properly expressed by subtracting the right-hand sides of eac

from the left-hand sides to form the following residuals:

Rp(x,t) = V'l[d/(x,t)% + % N(t)] - [V-DV—A
1
(= E, XpFT] Y HON(E) - 2 ijjnj(x,t), (3.9)
j=1

and

dn .
Rp (x,t) = %(x,t) = BjFTz//(x,t)N(t) + xmj(xat). (3.10)

The residuals Rp.(x,t) given by Eq. 3.10 are formed so that the multimode
kinetics equations” can be obtained. This procedure is not necessary,
however. An alternate way to solve the space-time problem is to formally
integrate Eq. 3.2 with respect to the time variable (see Eq. 7.1), and sub-

stitute the result into Eq. 3.1.

In addition to obeying Eqs. 3.1 and 3.2, the group fluxes must also
satisfy the following initial and boundary conditions:

¢1o(x)
B(x,0) = ¢o(x) = : : (3.11)
9 Gol)

and

pliEgd) = Glise=e) (3.12)

where a and b are the outer boundaries of the reactor. When the trial so-
lution Eq. 3.3 is substituted into Eq. 3.11, the following initial residuals

result:

R1(x) = ¢o(x) - ¢(x,0)N(0). (3.13)
A common procedure is to choose one of the ¥; vectors to be the initial
state ¢p(x). Then, the corresponding amplitude function N;(0) is completely
determined (usually chosen to be unity), while the remaining amplitude

functions are initially zero.
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The simplest way to ensure that the trial solution satisfies the
boundary conditions is to choose only trial functions that satisfy these

boundary conditions. Failing this, the following boundary residuals are
formed:

Ra(t) = 9(a,t)N(t), (3.14)

and

Rp(t) = %(b,t)N(t). (3.15)

The residuals given by Eqs. 3.9, 3.10, 3.13, 3.14, and 3.15 vanish
identically only when the exact solution is contained within the approximate
solution, Otherwise, they are nonzero functions of space and time. As yet,
they cannot be evaluated because the functions Nj(t) have not yet been deter-
mined. A good approximation procedure should yield functions Nj(t) which
minimize the residuals in some manner. One such procedure, the method
of weighted residuals, will now be used to derive the multimode kinetics
equations. The multimode kinetics equation can in turn be solved to com-
plete the approximate solution to Eqgs. 3.1 and 3.2.

B. The Multimode Kinetics Equations

Consider the G x I matrix of weighting functions
Wagletst) e o Wiglet)

T LD (3.16)

W (xt) wc,xix.t)

which, in principle, can be chosen arbitrarily. It must, however, be of the
same order as the matrix of trial functions Eq. 3.5. In addition, no two
columns can be proportional to one another, or a linearly dependent system
will result. With the use of Eq. 3.16, the method of weighted residuals can
be applied as follows.

The boundary residuals Ra(t) and Rp(t) can be combined with the
differential-equation residuals Ry(x,t) as follows: Multiply Eq. 3.9 by
Eq. 3.16, and integrate over the spatial variable. The boundary residuals
Ra(t) and Rp(t) are then multiplied by W(a,t) and W(b,t), respectively. The
boundary weighted residuals are then subtracted from the differential-
equation weighted residuals, and the result allowed to vanish:

f W T(x,t)Rg(x,t) dx =f W T(x,t)Rp(x,t)dx - WT(a,t)RA(t) - WT(b,t)Rp(t),
X X

(3.17)
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and

fWT(x,t)RE(x,t) dx = 0, (3.18)

In addition, Eq. 3.10 can be multiplied by wT(x,t), and Eq. 3.13~ can be
multiplied by WT(x,0). The resulting weighted-residual criteria are

fWT(x,t)RI:}(x,t) dxx =00, (3.19)
and
/WT(x,O)RI(x) dx = 0. (3.20)

The weighted-residual criteria represented by Eqs. 3.18-3.20 yield a set of
first-order ordinary differential equations, which can be solved to deter-
mine the unknown functions Nj(t). This set of equations can be put into a
familiar form if the spatial integrals are appropriately defined. This will
now be done.

Define a set of precursor amplitude functions by
Cj(t) = fWT(x,t)Xjnj(x,t) dx, of = i (3.21)
X

Assuming that the matrices Xj are time-independent, we can differentiate
Eq. 3.21 to obtain

dC; omn; i
el i 3 ow
= -/);w (x,t))(J iy dx+L ~ Xjnj(x,t) dx. (3.22)

For the amplitude functions to contain most of the time dependence,
both ¥(x,t) and W(x,t) should contain only slowly varying functions which are
bounded for all x and t. One way of ensuring that these criteria are satis-
fied is to impose the constraint condition®*

fwT(x,t)V" v dx = 0, (3.23)
s ot



which will enable the multimode kinetics equations to be derived. If the
shape functions are picked beforehand, they must be chosen such that

Eq. 3.23 is not violated. If they are calculated during the transient analy-
sis, Eq. 3.23 acts as a normalization condition on ¥(x,t). If Galerkin
weighting is used, Eq. 3.23 becomes

%%f YL (x,t)V -1y (x,t) dx = 0. (3.24)
X

If, as is commonly the case, the trial functions and the weighting functions
are chosen to be time-independent, the constraint conditions are satisfied
automatically. Furthermore, the second term on the right-hand side of
Eq. 3.22 vanishes. Henceforth, time dependence of the trial functions will
be retained, but the weighting functions will be assumed to be time-
independent.

When Eqs. 3.21-3.23 are substituted into the weighted-residual
criteria, Eqs. 3.18-3.20, the following equations are obtained:

f W T(x)V-1y(x,t) dx 1—1:1 = f wT(x) [V DV - A
x x

+(1-p) XPFT] ¥ (x,t) dx N(t)

% z chj(‘)' (3.25)
)
2 - by [ WTGXFETH(xt) dx N(®) - A;C(0) V.49
el B UL ol e g i '
and
fwT<x)¢o<x)dx f Nja)ginc) & N(o). e
x X

The spatial integrals in Egs. 3.25 and 3.26 can all be written in
shorthand form by defining the following I x I matrices:

A(t) = fWT(x)v"w(x,t) dx, (3.28)

31
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o(t) = fWT(x) [V-DV-A+(1-B)XPFT
X

J

+ 3 BpGET| viet) dx, (3.29)
j=1

Ej(t) = ﬁijT(x)XjFTl,[/(x,t) dx, (3.30)

X

and

J —

B(t) = X Bj(t). (351

When Eqs. 3.28-3.31 are substituted back into Egs. 3.25 and 3.26, we obtain

the multimode kinetics equations‘23

9]
) & = [p(r)- BRI N + T 2500, (3.32)
j=1
and
de _ '
= © B(ON(Y) - Slet PR (3.33)

Finally, assume that ¥;(x,0) = ®y(x), so that the initial conditions for the
N;(t) become

W)= 1,

and (3.34)

N;(0) = 0, i=2,..,1

The multimode kinetics equations can thus be written in the same
form as the equations for the point-reactor model. The matrices given by
Eqgs. 3.28-3.31 are called the generation-time matrix, the reactivity matrix,
and the effective delayed-neutron-fraction matrices. Furthermore, as is
seen in Section C below, the point-reactor model is the simplest special
case of the multimode kinetics formulation. Other special cases, which are
also discussed in this chapter, include orthogonal-expansion methods!” and
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synthesis methods.!® Techniques that use either spatially?’*?® or tem-
porallyz"'” discontinuous trial functions, such as nodal methods or quasi-
static methods, can also be considered in this context. Since they require
slight modifications in the derivation of their multimode kinetics equations,
they are discussed in more detail in Chapters IV and V, respectively.

C. The Point-reactor Model

The point-reactor model’® was the earliest and simplest method in-
troduced to treat reactor transients. Its name is derived from the assump-
tion that the flux remains in the same spatial configuration throughout a
transient; i.e., the reactor can be treated by considering only one point in
space.

As a weighted-residual method, the point-reactor model corresponds
to choosing just one time-independent mode in the expansion given by
Eq. 3.3; i.e.,

Bx,t) = Yy(x)Ny(t). (3.35)

This mode is usually, but not always, chosen to be the initial flux distribution.
In principle, any weighting functions can be chosen, but traditionally the
steady-state adjoint functions have been used.*® The possibility of choosing
other weighting functions has been considered by Gozani*® and by Gross and
Marable,*” although neither reported any numerical comparisons.

The mathematical properties of the point-reactor model are well
known.*® The amplitude function is expressed by a sum of J + 1 real-valued
exponentials exp(wjt), J of which have negative arguments. The remaining
exponential has either a positive or a negative argument, depending upon
whether the reactivity is positive or negative. The exponent that can change
sign is identified with the so-called asymptotic period. Each of the wj is a
root of the so-called inhour equation, given by

Bjw

p = Aw + e . (3.36)
J

‘M

1

J

Although the point-reactor model is not adequate to describe tran-
sients in large reactors, much has been learned about the nature of reactor
transients from its use. The role of the delayed-neutron precursors can
be well understood by using it. In fact, the value p = B (prompt critical)
is of vital importance. When p < B, the delayed neutrons arising from de-
cay of fission products aid in controlling a reactor excursion. When p > B,
this control feature vanishes. The point-reactor model and the concept of
reactivity contain too much valuable physical information to be abandoned
entirely. For this reason, the multimode kinetics equations are written as
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a generalization of the point-reactor model. Furthermore, in Chapter VIII,

attempts are made, when using more sophisticated approximations, to in-
terpret transients in terms of the terminology of the point-reactor model,
such as reactivity, asymptotic period, and prompt critical.

D. Continuous Spatial Modes

In a linear problem, if the Galerkin method is used in conjunction
with a complete set of trial functions, a convergent solution is guaran-
teed.?***! This fact is well known in the theory of orthogonal functions and
Fourier series.*” It was only natural, then, that an expansion into a series
of orthogonal functions would be one of the first techniques studied. Such

: 17,50,51
investigations were reported by Garabedian et al.’

Garabedian's criterion for choosing the trial functions is to choose,
in order, each function that obeys the Helmholtz equation,

V24 + B%y = 0, (3.37)

and satisfies the boundary conditions given by Eq. 3.12, The resulting trial
functions form a complete set and are given by

(2i-1) mx

= G R = S e 3.38
e g i ( )

)

wgi(x) = cos

This same set of functions also serves as the set of weighting functions, so
that Galerkin weighting is being used.

Unfortunately, however, Garabedian's method has not been widely
adopted for two reasons. First, convergence is not guaranteed for systems
in which the coefficients are time-dependent, or for nonlinear systems, In
these cases, the method has lost any advantages it may have possessed over
other criteria. Second, and more significantly, convergence has been found
to be very slow for all but the most simple problems; many modes are
needed to obtain a convergent solution. For these reasons, many investi-
gators'?’2>?" have turned to more pragmatic ways of choosing trial
functions.

The so-called natural modes'"*® of the reactor have been suggested
as trial-function choices. These are the modes that result when Eqsi=sil
and 3.2 are put into the form of eigenvalue problems. The "lambda modes"*
are the solutions of the static eigenvalue problem

2oy
[-V- DV +A] ¥(x) :)l (1-8) xp+ ¥ BjX| FTv (). (3.39)
; e
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The "omega-p modes"! are the modes of a reactor with no delayed-neutron
source. They are formed by replacing 9¢/ 0t by wp$, to obtain

[V-DV-A+(1-8) XpFT] 9(x) = wpv'y(x). (3.40)

Finally, the "omega-d modes"! are the natural modes of the reactor with
delayed neutrons. As a result, they include not only the flux components
%(x), but also the delayed components gj(x). as is shown in

J
[V -DV-A+(1-8) XpFT] ¥(x) + T AjX;€j(x) = wgV'¥(x), (3.41)
=
and .

ﬁjFT"/’(x) 2 ij";j(x) - wdﬁj(x). (3.42)

The natural modes exhibit the properties of finality®? and biorthogo-
nality,®® that is, if the adjoint problem is formulated, and the adjoint func-
tions are used as weighting functions (biorthogonality), the multimode kinetics
equations will be decoupled (finality). Each amplitude function can then be
determined independently. Unfortunately, the natural modes have little more
than academic value because they are extremely difficult to generate. This
is particularly true for the omega-d modes, which change whenever the shape
changes; i.e., they are continually changing.

The modes in Eq. 3.3 do not have to be generated by methods that
formulate eigenvalue problems. For example, Dougherty and Shen'? generate
what they call "Green's function modes" by golving diffusion equations with
fixed fission sources in various subregions of the reactor. Once they have
determined the modes, they formulate a variational principle from which
they determine the amplitude functions by using a semidirect method. They
use the adjoint function in their variational principle, which in turn is ap-
proximated in the same manner as is the flux, i.e., by a linear combination
of the functions adjoint to the "Green's function modes." As described in
Chapter II, this technique of forming a variational method is a generaliza-
tion of the method of weighted residuals. The trial functions of the adjoint
problem serve as weighting functions in the flux system, and vice versa.

The adjoint problem and the corresponding variational method for the space-
time problem are described in Section F of this chapter.

E. Synthesis Modes

A synthesis method?® attempts to construct a solution to a multi-
dimensional system from solutions of lower-dimensional systems. For ex-
ample, the three-dimensional steady-state flux distribution in a nuclear
reactor could be constructed by combining solutions to two-dimensional
problems in a weighted-residual procedure. Or, with more relevance to
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the space-time problem, the trial functions in Eq. 3.5 could be chosen as

actual shapes characteristic of possible states of the reactor being studied.

A "good" set of trial functions would consist of shapes that would.
in some way ibracket"! the true flux distribution during a transient. This
technique is especially valuable in the analysis of control-rod movements
for routine operation. For example, the shape of the flux with all rods in,
or with all rods out, is well known. These shapes do indeed bracket flux
configurations that exist while the rods are moving.

The bracketing idea has dubious value in the analysis of highly non-
linear accident-induced transients. There is no way, in this case, to pick
the bracketing shapes beforehand. Nevertheless, flux synthesis could still
be used to analyze transients initiated by a wide variety of accidents. Sl
particular, the choices of spatially and temporally discontinuous trial
functions, which are discussed in Chapters IV and V, offer far more flexi-
bility than the continuous synthesis presently under discussion.

F. The Adjoint Problem: A Variational Principle

When the system represented by Eqgs. 3.1, 3.2, 3,11, and 3.12 is
linear, there is a set of equations adjoint to it, which can be written it

J
Vel % (x,t) = [V-DV-AT+(1-p) Fxg] p*(x,t) + Y Bjn;‘(x,t), (3.43)
i=

and

d a .
e 3 (x.t) = MEXFo*(xt) - aymieot), (3.44)

where the asterisks indicate adjoint functions, and the superscript T sig-
nifies transposes of the respective matrices. When the eigenvalue problem
for the omega-d modes is formed, and a corresponding eigenvalue problem
is formed for the adjoint equations, the eigenfunctions for the flux problem
are orthogonal to the eigenfunctions of the adjoint problem.’®> The flux and
adjoint eigenfunctions are then said to form a biorthogonal set.’®> According
to Becker,’® a stationary functional can always be written in terms of a
system and its adjoint system. Accordingly, the following functional’® is a
stationary functional for the system being considered in this chapter:

tf
= VoxT . D - ¢*T [A - (1- 7% o L iy - DI O *)
fm/x‘{(b DV¢-¢ [A (1 ﬁ)XPF]? 2<¢>*v Bt¢ 1V at¢

J
KT mat mBETh e ok _l*i_if)]ddt.
+j§ [¢ AXnj + 3R FETS - n¥Am, z(”j QUL 7 (3.45)



For simplicity, the initial conditions, final conditions, and boundary con-
ditions have been omitted from the above. By taking arbitrary variations
of J with respect to ¢*, and allowing them to vanish, we obtain the group-
diffusion Eqs. 3.1 and 3.2. Similarly, by taking variations with respect

to ¢, and allowing 6J to vanish, we obtain the adjoint-system Eqs. 3.43
and 3.44,

The functional J is stationary with respect to arbitrary variations
in ¢* and ¢, so that the value of J can be determined very accurately. In
this case, though, since J does not represent any physical quantity, the
advantage gained from using the variational principle is not clear.

As mentioned in Chapter II, when a variational method is used, the
adjoint function must be expanded as a sum of trial functions; that is,

I
P*(x,t) = T yFINT(1). (3.46)
i=1

In addition, when Eqgs. 3.3 and 3.46 are substituted into the variational prin-
ciple, the taking of variations is essentially equivalent to using two comgle-
mentary weighted-residual methods which determine the N;(t) and the Ny (t).
The trial functions for the first method are the weighting functions for the
second, and vice versa,

If the choice

i) = 90 : (3.47)
is made, then the variational method is equivalent to using the Galerkin
method to solve both the flux and adjoint problems. Indeed, even if Eq. 3.47
does not hold, there seems to be little advantage to using a variational
method for solving space-time problems. Further, since the functional
given by Eq. 3.45 can only be written for linear systems, a weighted-
residual procedure should be adopted from the outset. There is no need
to search for variational principles for solving space-time problems when
the more simple weighted-residual formulation will do just as well.

It is possible, however, to find variational principles for nonlinear
systems. Luco’® has formulated one for a two-energy group model with no
delayed neutrons, using the following "constant power removal" model® for
the temperature change:

oT K
-y E(Zn«b, + 3£a02), (3.48)

where "K is a conversion factor from fissions to some unit of energy, p is
the density of the reactor material, and Cp is its specific heat."*
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When Eq. 3.48 is used with Egs. 3.1 and 3.2 to formulate a varia-
tional principle, the concept of an adjoint temperature must be introduced.
A set of adjoint equations is then derived from the variational principle by
taking variations with respect to ¢;, ¢,, and T. These equations are more
complicated than Eqs. 3.43 and 3.44. Furthermore, the equation adjoint to
Eq. 3.48 is so complicated that the real fluxes themselves appear in it,
Nevertheless, the adjoint system is linear.*

Luco's derivation underscores the earlier observation that weighted-
residual methods are preferable, in that it serves to illustrate the complexity
of variational methods for even the most simple nonlinear systems. Al-
though the formulations are possible, they seem to be far less practical than
the direct use of weighted-residual methods.
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CHAPTER IV
SPATIALLY DISCONTINUOUS TRIAL FUNCTIONS

A. Spatial Discontinuities

The spatially discontinuous trial-function method attempts to gain
more flexibility by using trial functions suitable to local regions within
a reactor, rather than to the entire reactor. The time dependence is then
described by a different set of amplitude functions for each region. If trial
functions are chosen properly, fewer are required within a region to obtain
an accurate solution as compared with trial functions that vary continuously
throughout the reactor. In addition, the numerical problem of "almost
linear dependence" is easier to solve than in the continuous case, because
only trial functions within a region need be compared. Linear dependence
is discussed in Appendix A.

The discontinuities appear at the region interfaces. They fall into
two classes, which can most easily be described with the aid of the two-
dimensional "reactor" of Fig. 1. For this
z reactor, the trial functions are functions
of the variable x, so that the undetermined
functions will depend upon z and t. In the
first class,?® one set of functions continuous
in x is used between z = 0 and z = z;, and
another set, also continuous in x, is used
between z, and z,. Since only one space
dimension is being treated in this report
the first clas‘s will not be discussed in
this chapter. However, as will be seen
A X, B ¢ in Chapter V, the temporally discontinuous
trial-function methods do fall into this class.

Z2

Z)

113-1895
Fig. 1. A Two-dimensional Reactor
Illustrating Spatially Dis-
continuous Trial Functions

In the second class, known as multi-
channel synthesis,”'55 one set of trial func-
tions is used for all z and t. These trial
functions may exhibit discontinuities at x;,. The main feature of multi-
channel synthesis, however, is not that the trial functions are discontinuous,
but that the regions (0 to x;, x; to b) are each described by different sets
of modes. Since neutrons born in one region can undergo an event in the
other, interregion leakage must be considered. The usual way is to intro-
duce coupling coefficients, which are multipliers of the fluxes and currents
at the interfaces, for example, at x;. In this way, an effort is made to
preserve the diffusion-theory interface conditions of flux and current
continuity.

The coupling-coefficient approach can only provide crude estimates
of the interregion flux contributions. The coupling coefficients cannot
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only be time-dependent ifithe

account for changes in the flux shape and can
Nevertheless, the method

matrix of diffusion coefficients is time-dependent.
has been used successfully.55

B. The Role of Interface Residuals in Multichannel Synthesis

esis version of the multimode
emphasis will be placed on
ons in order to derive the

In this section, the multichannel-synth
kinetics equations will be derived. Particular
weighting the diffusion-theory interface conditi

coupling coefficients.

Suppose a reactor is partitioned into K synthesis regions, or chan-
nels, with interfaces at x;, ..., Xg_ Then, Egs. 3.1, 3.2, 3. Llyiandi Sl 28can
be rewritten in terms of the familiar multiregion formulation®® as follows

(assuming one energy group for simplicity):

1 9%k T
S [V - De(x,t)V - Alxt) + (1- B) XpF -~ (x,t)] dy(xt)
i
+ 2 AXMyklet), k=1 K, (4.1)
j=1
97k an
5 = BF (e - Amglxt), k=L, Koo o= 1 (4.2)
# (x,0) = $ok(x), k =1,..., K, (4.3)
and
(7)1(3,15) = ¢K(b,t) =0, (4~4)

where the subscript k indicates the kth channel. In addition to Eqs. 4.1-4.4,
the system includes the following interface conditions, which preserve
continuity of flux and current:

arBrlxgt) = adyy (xpt), k= 1,.., K- 1, (4.5)
and
O ¢y o9
OLsz(Xk,t) e S OLZDk_H(xk,t) a_xk ; Je =l INER T (4.6)
g X=X

The parameters a, and a, are, for now, unspecified.



The synthesis approximation is made for each channel by expanding
each ¢y in the trial solutions:

o T
Pplx,t) = .Z Vpi(®IN(t), k=1, .., K. (4.7)
=3

The integer I, is the number of trial functions chosen for the kth synthesis
region. When the trial solutions are substituted into the system given by
Eqs. 4.1-4.6, the following residuals are formed:

0y
Ry, (1) =+ == == - [V D)V - AGkt) + (1= B) xpF T(x.t)] Fiel.t)
J
- 2 Axjmjklat), k=1, .. K, (4.8)
J51
o) = - BiFTxt)oy + A mjklxit), k=1, .., K, j=1,..,17,
(4.9)
RA(t) = y(a,t), (4.10)
Rp(t) = dk(b,t), (4.11)
Ry (x) = dok(x) - $(x,0), k = 1, ..., K, (4.12)
Ry, (xpot) = afin(Xiot) - aidklxet) k=1, ., K- 1, (4.13)
and
¢
Ry (xpt) = sz+|(xkr‘)¢
x=xk
3k
- %Dy(xit) - it g P S8 (4.14)
x—xk

Equations 4.8-4.12 are the multiregion equivalents of Egs. 3.9, 3.10,
3.13, 3.14, and 3.15. Equations 4.13 and 4.14 are called the interface
residuals. They are not unique, however. Adding Eq. 4.6 to Eq. 4.5 and
subtracting Eq. 4.6 from Eq. 4.5 produce the following equivalent interface
conditions:
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a(1’k+1

3¢
K — :
by (xp0t) + @2Dy(xprt) T = by (Kpot) + 22Dien (t) T30 S
X=Xk
TR o (4.15)
and
¢
OpK ki1
a1y (xpt) - ADy(xi0t) 5= = a0y (x10t) ~@2Den(xet) T3
X=Xk SIS
(4.16)

When Eq. 4.7 is substituted into Egs. 4.15 and 4.16, the following residuals

are formed:

- - a¢k+1
Rg, (xpt) = bpy (Xjot) - aailxiot) + azDien (e t) —5
k o
3
- ;D (x,t) a—xk- 5 CR= R = (4.17)
X=Xk
and
o e a(bkﬂ
RDk(xk,t) = APyt (xk,t) - 0y Br(xy,t) - ADit (xK,t) = ok
33
+asz(xk,t)a;¢k e T R - (4.18)
* X=Xk

The residuals given by Egs. 4.17 and 4.18 differ from those given by
Eqgs. 4.13 and 4.14. Nevertheless, either set is permissible.

The residuals can be weighted and the weighted-residual method
used. However, further explanation is needed. In Chapter II, it was men-
tioned that surface integrals should be formed when using the weighted-
residual method on the boundary conditions. The boundary weighted resid-
uals should then either be added to or subtracted from the differential-
equation weighted residuals in order to be able to maintain a completely
determinable system. The sum (or difference) should then be allowed to
vanish. In this chapter, interface residuals are treated in the same
manner.



In theory, the weighting functions for the interface residuals are
arbitrary. In practice, though, they are usually closely related to the
weighting functions used to weight Eqs. 4.8 and 4.9. Stacey's variational
method,* for example, would weight Eqs. 4.13 and 4.14 with the following:

dw, . dW :
1 k, ik kt, i
wlk,ik(xk’t) “ E[Dk(xk't) d_x + Dk+l(Xk,t) T » (419)
X=X X=Xk,
and
- l 2 -
ka,ik(xk) = Wk.ik(xk) + Wk+1»ik+l(xk) RS e S
ety = 05 cveicTidys A ReeEe R (4.20)

The factor 1/2, however, automatically implies that each channel contains
an equal number of trial functions; that is, Iy = Ix4,. A more general
approach“’“ would be to chose

i X
wIk,ik(xk't) = ’ka(xk’t)d—x
x-xk
AWt i
L k+1
+(1-9) Dy (xxet) —— : (4.21)
x:xk
»
and
ka,ik(xk> woih-y) Wk,ik(xk) t YWk, (x5), i = Loooy Iks
s k=), .. K-, (4.22)

where 0 = v = 1. When 7y is either zero or one, each region may have
different numbers of trial functions.’” If zero is chosen, the flux-interface
conditions are weighted by the I 4, values of the derivative of the weighting
functions of the region to the right of the interface. The current-interface
conditions are weighted by the I values of the weighting functions of the
region to the left of the interface. If v is chosen to be unity, the flux-
interface conditions are weighted by the I} values of the derivatives of the
left-side weighting functions while the current-interface residuals are
weighted by the Iy4, values of the right-side weighting functions.
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The choices y = 0 or y = 1 appear to be equally valid. Further-
more, if each region contains the same number of modes, no value of Y
appears to deserve preference. Pomraning,56 however, in his discussion
of temporally discontinuous trial functions, concludes that y = 1/2 is
the most "natural" choice. Pomraning's arguments are discussed further
in Chapter V.

The argument can be repeated for the weighting of Egs. 4.17 and
4,18. This time, however,

WSk,ik(xk) = Vwk,ik(xk) (=) Wk+1’ik+1(xk)’ (4.23)
and
WDk’ik(Xk) = (1-79) Wie,ip (%) + YWich, iy, G ik = oo Ty
ety sy sy 182 1k s 1Ko L (4.24)

Equations 4.23 and 4,24, with y = 1, will now be used to complete the
derivation of the multimode kinetics equations of multichannel synthesis.

The weighted-residual procedure is now performed by multiplying
Eq. 4.8 by the weighting functions Wk,ik(x)’ integrating over region k, and

subtracting the interface weighted residuals obtained by multiplying
Eq. 4.17 by Eq. 4.23, and Eq. 4.18 by Eq. 4. 25:

X
0 :/ 5 Wk,ik(X)RFk(x’t> dx - Wk,ik(xk)RSk(xk’t)
Xk-1
- Wk,ik(xk-l)RDk_1(xk_l,t), loh— ] aCre (4.25)
where
Xp = a, and xg = b.

Weighted-residual criteria for the precursor equations and the initial con-

ditions result when the weighting functions Wy j. (x) multiply Eqs. 4.9
and 4.12; ¢

e :
f Wie iy ()RPj, (xt) dx = 0, (4.26)
Xk-1
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and
*k
f Wk,ik(x)Rok(x) dx = 0, e T e SRR R R (4.27)
k-1
where
X9 = a, and xg = b,
The weighted-residual criteria given by Eqs. 4.25-4.27 are equivalent
to the multimode kinetics equations. Therefore, a reactor divided into K
synthesis regions with Iy modes in each region could be described by

Eqs. 3.32 and 3.33, with the coefficients of the matrices p, Bj, and A
described as follows:

A is a block diagonal®® I x I matrix

j&s08:0,.. 0]
0 A,0... 0
05 SETETTPE | 2208
00 0...A
L 3

where each Ay is a square submatrix of orde‘r Ix. Note that
K
TS T
k=1

Within a submatrix Ak, an element is

) _ [ K 1
Amn =f wk.m(X); wk,n(x) dxv 15 = lr S Ik' n = l' sore Ik
X

ke (4.29)

The Ej matrices are also block diagonal matrices
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ek =
fig 0.0 0
0 By, 0 0

EJ(t) - ) J = 11
07400, .- i

Within a submatrix Ejk‘ the elements are

Slc

AR ) - Wi () XGE T (6,600, ) dx,
Xk-1
I R

Finally, o(t) is an I x I block tridiagonal matrix®® given by

W Boo ... o o |

Wedoo . .. o 0
p(t) =

0 000 pi{K'-ll) p&K_

0 0 00 p%K-l) p%)

(4.30)

(4.31)

(4.32)

The submatrices p]((k>(t) on the main diagonal contain elements given by



X dw dy
A = f {wk,m(x)[(l - B) XpFT(xt) - A(x.t)] Yk, n(x) - Di(x,t) d‘:"‘ :’;"} dx
X,

k-1

X=Xy
x=xk:|

These elements account for the intraregion processes. The interregion
processes are represented by the coupling coefficients, which are discussed
next.

d
- Wie,m(%k-1) l}l\l‘ k,n(%k-1) + (1 - 02) Dy(xye_nt) ——

dwk n
= Wi, m(xk) a‘lwk,n(xk) = (1 - ;) Dy(xy,t) 3

’
X

m = 1 I ¥ =1, s B (4'33)

(k)

The submatrices P31 (t) on the supradiagonal represent the coupling
from the region to the right of interface k to the region to the left of the
interface. The matrix elements for this "backward" coupling are given by

"

dy
Pgir)l(t) Wic, m(Xk)| %1 ¥i+1,n(x5) + @2Dict (e, t) —:xll""‘n

x=Xk
m = 1, ..., Iy, n =1, oo Iegye (4.34)

The submatrices p(k-l)(t) on the subdiagonal represent the coupling from
the region to the left of interface k to the region to the right of the inter-
face. The matrix elements for this "forward" coupling are

du’k,n
Wiy, m(*1) [a1 ¥i, n(xk) - @2Di(xy,t) —3 g
x:xk

plkl(®)

TS TR PR Pk (4.35)

m

The usual matrix notation can be obtained for the elements of A, p, and ﬁj
by expanding the submatrices within the large matrix and relabeling the

matrix elements.

The amplitude functions and the precursor amplitude functions also
must be relabeled. Within the kth synthesis region, the precursor amplitude
functions are
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X
Kk
Cjkm(t) =f Wim () XjNjk(x.t) dx,  m =1, ..., L,
X

(4.36)

To effect the relabeling, the amplitude functions Nym(t) (see Eq. 4.7) and
the precursor amplitude functions from each region are placed in I-
dimensional column vectors from the top, beginning with k = 1, and pro-
ceeding channel by channel, until the vectors are filled.

Equations 4.33-4.35 contain the unspecified parameters o, and a,,
which were introduced as multipliers of the interface conditions, Egs. 4.5
and 4.6, When a, and a, are both unity, there are no interface current
contributions to Eq. 4.33. This choice shall be called surface-cancellation
weighting. Ifq; = 1/4 and a, = 1/2, however, the surface terms in each
equation are the partial currents at the interfaces. Consequently, this
choice shall be called partial-current weighting. These weighting techniques
are compared in Chapter VIIIL

Unfortunately, the coupling coefficients are time-dependent only when
the diffusion coefficients are time-dependent. The formulation described
above assumes time-independent shape functions. However, the contribution
to the total flux in one region from the changing flux in the others is not
neglected, because the coupling coefficients multiply the amplitude functions.

Another limitation of the method is a direct consequence of the
diffusion-theory interface conditions: nonadjacent region coupling must
be neglected. This assumption is very poor when the synthesis regions
are small.

C. A Nodal Approximation

If only one trial function is chosen in each synthesis region, the
multichannel-synthesis method reduces to a nodal method.®:%? Many nodal
methods have been formulated from many different points of view. The
multichannel-synthesis version is one of the few that are consistent. It
lies completely within the confines of diffusion theory. Consequently, it
should not be expected to do as well as those based on transport theory.m’61
Another drawback is that shape changes with time do not appear in the
definitions of the shape functions.

When a,; = 1/4 and @, = 1/2, the coupling coefficients are propor-
tional to the partial currents at the interfaces. This choice has been as-
signed to a nodal approximation in an ad hoc derivation by Kaplan.®? There
does not seem to be any a priori reason why this choice of a;and &, should
be better or worse than any other choice. Accordingly, Chapter VIII contains
a numerical comparison of partial-current weighting and surface-cancellation
weighting in the nodal approximation derived above.
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CHAPTER V
TEMPORALLY DISCONTINUOUS TRIAL FUNCTIONS

A. Introduction

In a highly nonlinear transient, the flux shape can change drastically
and continually, so that the "bracketing" idea discussed in Chapter III would
in this case be essentially useless. Accordingly, several investigators“''5’29’55
have developed methods that provide means of changing the shape functions
at selected times during a transient analysis. Some of these methods use
precalculated shapes,”'55 and others recalculate the shapes in some manner
during the analysis.!*’!® The former are known as temporally discontinuous
flux-synthesis methods; the latter are called quasistatic or factorization
methods. Each can be regarded as a space-time weighted-residual method,
as is shown in this chapter.

In Chapter IV, it was stated that the temporal discontinuities are

similar to the first type of spatial discontinuities. To see this more clearly,
consider Fig. 2, which shows a one-

t dimensional reactor undergoing a

t transient. It is being analyzed with

one set of shape functions from t, to

t;, and a second set from t; to tf. Each

set, however, is continuous in x. As

will be seen, this type of discontinuity

does not give rise to coupling coeffi-

cients. Instead, a new "initial residual”

is required when the set of trial func-

to X tions is changed.
a

113-1897 Errors can be introduced when
one set of trial functions is substituted
for another, or, more realistically, if
one trial function is removed from the
set and another substituted for it. Consequently, jump discontinuities in
the neutron flux and the precursor concentrations will result. If trial
functions are removed, they should be "unimportant" in order that the
sizes of the discontinuities be minimized, that is, if their corresponding
amplitude functions are small. If the shape functions are recalculated

at ti, discontinuities can still result, unless some corrective action is
taken. Such action usually takes the form of an iterative technique for
shape-function recalculation. The newly calculated shapes and the previous
shapes are used in linear combination for each iteration until the true
shape function is found.

Fig. 2. Illustration of the Use of Temporally
Discontinuous Trial Functions

Section B below contains a weighted-residual treatment of temporal
discontinuities. The treatment extends the derivation of the multimode
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kinetics equations given in Chapter III to admit temporally discontinuous
trial functions. Section C of this chapter contains a discussion of the

quasistatic (or factorization) method.

B. A Weighted-residual Treatment of Temporal Discontinuities

If shape functions are changed at t = t; during the analysis of a
transient, an additional condition must be added to the system of equations
given by Egs. 3.1, 3.2, 3.11, and 3.12. This condition states that the true

flux must not exhibit a jump discontinuity at t = tj:

Blx,tiq) = ¢x,t; ) (5.1)
For simplicity, a one-energy group model is adopted in this chapter. In

addition, the subscripts 1 and 2 denote the values of functions when
to =t <tj, and t; < t = tg, respectively. Thus, Eq. 5.1 can be rewritten as

Pr(x,t;) = palx,t;). (5.2)

Instead of the trial solution given by Eq. 3.3, consider the following
trial solutions:

I
$i(x,t) = .Z P (68N (t) = 9(x,t)N (t), (523
and
. 12
ba(x,t) = .Z Yia(x, )N, (t) = 95(x,t)Ny(t), (5.4)
i=1

where I, and I, are the number of trial functions chosen in the time intervals
to =t <tjand t; < t= tf, respectively. The matrices %1 and 7/, and the
column vectors N; and N, are given by

zl/l(x:t) = [Wu(x,f) ?//I“(x:t)]r (5-5)

wz(x:t) = [wIZ(x’t) Ateje, wlzz(x:t)]: (56)
Ny (t)

e ' (5.7)



and

N,(t)

N(t) = . . (5.8)

Nl;z(t)

When Eqs. 5.3 and 5.4 are substituted into Eqgs. 3.1, 3.2, 3.11, 3.12, and 5.2,
the residuals Ry, (x,t), Rp,(x,t), Rpjl(x,t), Rpjz(x,t), Ry, (x), Rp,(x), Ry, (1),
Ra,(t), Rp,(t), and Rp,(t) are formed. These residuals are analogous to
those given by Egs. 3.9, 3.10, 3.13, 3.14, and 3.15; those subscripted with

1 are for the first time interval; those subscripted with 2 are for the
second time interval. The residual Rlz(x), then, can be interpreted as

the initial residual for the second time interval and is written as

RIZ(X) b de(xrti) - al(xvti)' (5'9)

It is evident that the weighted-residual method used to derive the
multimode kinetics equations in Chapter III can be repeated here to give
two systems of multimode kinetics equations, one for each time interval.
When the weighted-residual method is applied to Eq. 5.9, the initial con-
ditions for the amplitude functions to be used in the second time interval
will be obtained. They will be expressed in terms of the values att = t;
of the amplitude functions used for the first time interval. However, this
use of Eq. 5.9 is not straightforward, as is now shown.

.
The following questions must be answered if temporally discontinuous
trial functions are to be used: What if the weighting functions are changed at

t = tj as well? Which set should be used? What if I, }/ I;; that is, what should

be done if the number of trial functions is changed?

Consider the weighting-function matrices

Wi(x,t) = [Wn(xt) ... Wy, (xt)], (5.10)

Wa(x,t) = [Wia(x,t) ... lez(x,t)] (5.11)
and

Wix) = [Wyi(x) ... Wr,i(x)], (5.12)

which weight, respectively, the residuals for the two time intervals, and the
initial residual for the second time interval. Assuming that choices for W,
and W; have already been made, the problem is to select Wi(x). Some
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reasonable choices seem to be W;(x,t;), Wz(x,t;), or some linear combination
of the two. A closer inspection of Egs. 5.10-5.12 reveals, however, that
since I may not equal I, W,(x,t;) cannot, in general, be chosen for Wj(x),
whereas W(x,t;) can always be chosen. This fact was first recognized by
Becker.”’

Suppose, on the other hand, that I, = I,. Then, Wi(x) can be chosen
as any linear combination of W,(x,tj) and W;(x,ti); for example,

Wi(x) = aW(x,ti) + (1 -a) Wa(x,t;), (5:13)

where 0 = a = 1, but is otherwise arbitrary. Indeed, as }F’omraning56 points
out, a is so arbitrary that it can even be a function of x. He goes on to
conclude, on "pseudophysical grounds,"’® and on incorrect mathematical
grounds,63 that the most reasonable choice is @ = 1/2. His mathematical
argument will not be considered here. However, he argues on a "physical"
basis that each weighting function is considered equally when a = 1/2. Even
if he is correct, Becker's observation regarding unequal numbers of trial
functions in each time interval, which would set oo = 0, makes the argument
somewhat irrelevant. The initial conditions for the amplitude functions used
in the second time interval can now be found, with a = 0; that is,

Wi(x) = Wa(x,t;). (5.14)

When Eq. 5.9 is multiplied by the weighting function (I/v)W;r(x,ti),
and the result integrated over all x, the result is

b
f W;(x,ti)%[az(x,ti) - 5l(x,ti)] b= 0 (5515

If Eqs. 5.3 and 5.4 are used, Eq. 5.15 becomes

b
0 =/ WzT(thi)é Ya(x,t;) dx Ny(t;)
a

b
f W;r(x'ti)%wl(x:ti) dx N (t;). (5.16)
a

The I, x I, matrix in the first term is imrriediately recognized as the gen-

eration time matrix A,(t;). The I, x I, matrix in the second term shall be
labeled Vy(tj) and is given by :



b
Vatt) = [ wEeet) S i) ox (5.17)
a

Equation 5.16 becomes

Dp(ti)Na(ty) = Var(t)Ny(t;). (5.18)
Finally, the initial conditions N,(t;) are determined by

Na(ti) = Az'(ty)Va(ti)Ny(t5), (5.19)

and the multimode kinetics equations can now be solved over the second
time interval.

Both quasistatic methods and flux-synthesis methods have been
treated by the above analysis. The temporally discontinuous synthesis
methods differ from the quasistatic methods in the method of choosing the
trial functions ¥, and ¥,. These are precalculated in a synthesis method
to be used beginning att = t; and t = tj, respectively. The quasistatic
method recalculates the trial functions when t = t;, using the trial functions
7 (x,to) along with an interative scheme. This important method is described
in detail in Section C below.

C. The Quasistatic Method

1. Main Features

The quasistatic methods®''*7!% ha\‘re always been formulated using
only one mode, that is, I}, = I, = 1, in Eqgs. 5.3 and 5.4. In addition, the
weighting functions have always been the steady-state adjoint functions. The
multimode kinetics equations then reduce to the point-reactor model, whichis
used until a shape recalculation is to be made. To derive the equation with
which the second shape can be calculated, Eq. 3.3 is substituted into Eq. 3.1
to obtain

19y _ |g. T .1 &N
;3?‘ [v DV - A+ (1- B) XpF T INGE dt]v//(x,t)

~

J
¥ #‘)El AjXj (). (5.20)

In addition, the constraint condition, Eq. 3.23 becomes
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dt
o

-d—fWT(x);l;zj/(x,t) o =0 (55210

The shape equation is coupled to the amplitude equation in

three ways:

a. The precursor term in Eq. 5.20 is divided by N(t).

b. The first term on the left-hand side of Eq. 5.20 contains
the logarithmic derivative of the amplitude function, that
is, the reciprocal period.

s Nonlinear feedback effects make D, A, and FT functions
of ¥(x,t)N(t).

The main assumption of the quasistatic method is now made. The
time dependence of the shape function is not as important as that of the am-
plitude function.'> From a numerical standpoint, this means that only a few
shape-function recalculations are needed, while the amplitude function is
recalculated a great many times. Furthermore, the term oY /at in Eq. 5.20
can either be neglected entirely or replaced by the following backward
difference approximation:

S ?//(x,ti) gy z//(x,to)
S5t Y(x,ty) = Sh T (5.22)
Equation 5.22 assigns a linear variation to ¥(x,t) over the first time interval.
Neglecting d9/dt entirely (the "original quasistatic approximation"'®) as-
sumes that the shape function ¥(x,t;) is used throughout the first interval.
The following equation, called the "improved quasistatic approximation,"15
results when Eq. 5.22 is substituted into Eq. 5.20:

V- DV (x,t;) = [A = {1l = ) XPFT + le(ti) i_lj = f to] W(x,t;)
o

Y(xto) L ol =

£ b2
ST 122

The "adiabatic approximation”15 also neglects 57///515 in Fig. 5.20.
Furthermore, it assumes that the shape of the delayed-neutronsource is the
same as that of the prompt-neutronsource. The new shape functionis then
found by solving the "lambda mode" eigenvalue problem, Eq. 3.39, for the funda-
mental lambda mode. The adiabatic model, then, removes all coupling between



the amplitude calculation and the shape calculation, except for nonlinear
feedback effects. Ott and Meneley'® have shown that the adiabatic model

is quite inferior to both the original quasistatic and the improved quasistatic
methods. Nevertheless, it is far better than the point-reactor model, in
which the shape function is never recalculated.

The residual of Eq. 5.9 can be significant in each of the quasi-
static methods. In fact, even when Eq. 5.19 is used to determine the initial
condition of N,, the error introduced is so large that the solution becomes
meaningless. Therefore, an iterative scheme must be used to make
RI;(x) = 0. The improved quasistatic method implicitly contains a natural
iterative scheme, which proceeds as follows:

For the initial guess, the shape 7(x,t;) is estimated from
Eq. 5.23. The second iteration now proceeds over the first time interval
with

Y (x,ty). (5.24)

t -t t -t

Yl t) = bt gy (xitg) + 0
i

The shape function given by Eq. 5.24 is used to calculate p(t), Ej(t), and
A(t) in the point-reactor model. When the amplitude function at't = tj
has been recalculated, Eq. 5.23 is again used to get the shape function
1 (x,t;). Iterations are continued as needed; very few are actually re-
quired. When a converged solution to ¢(x,t;) is obtained, the residual
given by Eq. 5.9 vanishes; that is,

Yalx,t;) = Ylx,t;), (5.25)
and
Na(t;) = Ny(t;). (5.26)

The solution proceeds over the second time interval until another shape
recalculation is needed.

Quasistatic methods have traditionally been formulated using
the steady-state adjoint functions as the weighting functions. There is no
intrinsic reason why this choice should be made, especially in the analysis
of highly nonlinear transients. Becker* has suggested the use of the time-
dependent adjoint function. This choice, however, requires a simultaneous
solution of the adjoint problem. A more practical alternative is to use the
time-dependent shape function itself as the weighting function. This ap-
plication of the Galerkin method requires the satisfaction of the constraint
condition, Eq. 3.24.
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2. Shape-function Improvement Using a Nodal Method

A possible way to increase the time-interval size between shape-
function recalculations is to apply the nodal method to the shape-function
equation,®* that is, to Eq. 5.20. Since the precursor behavior must also be
considered, Eq. 3.2 is rewritten as

9
=2 () = BFTGx Y (xN(E) - Ajnjlx.t) (5.27)

For the first iteration in the procedure described above, the reactor can
be divided into nodes for purposes of carrying out the shape calculation.
The shape function can now be expanded in the approximate solution

M
Yxt) = ¥ omx)PL,(t) = 6(x)P(t), (5.28)
m=1

where each 6 is the portion of the shape ¥(x,ty) appearing in the mth node.

Each P (t) is then the "amplitude of the shape function" in the mth region.
The matr1ces 6(x) and P(t) are

8(x) = [61(x) ... op(x)], (5.29)

and

(5.30)

Equation 5.28 can now be substituted into Egs. 5.20 and 5.27 to obtain the
residuals

Rp(xt) = = 6(x) S

- [v- D(x,t)V - A(x,t) + (1- p) XpFT(x,t) - @] 8(x)P(t)

e
"N 2 X;mj(x,t), (5.31)
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and
R _ 9y T
pj(x,t) - T(x,t) - BjF  (x,t) 6(x)P(t)N(t) + Xjmj(x,t), (5.32)
where
5 e dn(t)
alt) = Wt) at {5.33)

Introduce the weighting functions (x),
Ax) = [Q1(x) ... Qp(x)], (5.34)
which will be used to weight Eqs. 5.31 and 5.32 in the method of weighted
residuals. In a development closely resembling that of Chapter IV, the

following interface residuals and weighting functions are obtained:

Rs, (xmit) = @ [Qmﬂ(xm)PmH(t) g Gm(xm)Pm(t)]

dé

m+l
tag Dm+1(xmvt) ax Pm'h(t)
X=Xm
~ Do, t) —=== P..(t)], (5.35)
X=X .

RDm(xmvt) = a,,[e m+1(xm ) Pm+i(t) - Gm(xm)Pm(t)]

a6
-a, [Dm+l(xm,t) d‘:“ Po(t)
X-Xm
de
= Dm(xm.t)-d—m Pm(t)], (5.36)
- x=xm
Qsm(xm) = Qm(xm), (5.37)

and

QD(®*m) = Qm+ilxm)y m =1, .., M-1. (5.38)
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To use the method of weighted residuals, note that

..1
f ‘Ql RFl(X t) dx

b
f QT(xRp(x,t) ax = - ,
a

RFM(X t) dx

F\é‘

M-1

and

]
|

Ql(x)Rle(x't) dx
b .

f QT(X)Rpj(x,t) e : ,

a .

QM(x)Rij(x,t) dx
XM-1

ﬁ\c‘

so that, analogous to Eqs. 4.25 and 4.26,

Sl
0 :f Qm(x)RFm(x,t) dx - Qm(xm)RSm(xm,t)
X

where

Xp = a and xpq = b.

(5:39))

(5.40)

(5.41)

(5.42)

The weighted-residual criteria, Eqs. 5.41 and 5.42, yield a set of first-order,
ordinary differential equations, similar in form to the multimode kinetics

equations. This system can be written in the compact form,



J
dpP 1
Soan = K(t)P(t) + N0l El ijj(t), (5.43)
and
dQ;
_dTJ = Bj(t)N(t)P(t) - X;Qj(t), (5.44)

where the matrix elements of the I x I diagonal matrices L and Bj(t) are
given by

Xr 1
L= Q,(x)ve,(x) G T MR (5.45)
Xr-1
and
p
Bjrr(t) = ﬁjf Qx)FT(x,t) Xj6r(x) dx, r =1, ..., M;
!
i=1 .., (5.46)

The I x I matrix K(t), however, is not diagonal, but tridiagonal. The main
diagonal elements are given by

K..(t) = ol Q(x)V-D(xt)V-A(xt)+‘(l—ﬁ)X FI( 0 e
rr = r ri% rix pF#(x,t) T r(x) dx
Xr-1
dGr
- Qp(xp,) [br(xp.,) + (1 -az) Drlxp_),t) €=
X=Xy _,
dGr
- Qr(xr) aler(xr) - (1-ap) Dr(xr't)ﬁ A r =1, - -
X=X
" (5.47)

The backward-coupling terms on the supradiagonal are
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dBr 4y
Kr,r+1(t) = Qr(xy) ) O 4, (xr) +a;Dr 4y (xrst) T

X=Xy
Tl Bt SN ol (5.48)

whereas the forward-coupling terms on the subdiagonal are

de |

Kr+1,r(t) = ‘Qr+1(xr) aler(xr) 'azDr(er”E

s T MR ()

X=Xy

(5.49)

Equations 5.43 and 5.44 are solved to determine the shape
function ¥ (x,t); the point-reactor model is used for N(t). Notice, however,
that the systems are coupled, since N(t) appears in Egs. 5.43 and 5.44.
Fortunately, since ¥(x,t) is slowly varying in time relative to N(t),

Egs. 5.43 and 5.44 do not have to be solved whenever N(t) is calculated.
Another fortunate circumstance is that, in addition to the subintervals

for performing the N(t) and the ¥(x,t) calculations, the quasistatic method
provides an intermediate subinterval, which is used to calculate new
functional forms for p, Ej, and A. (This refinement is not discussed here,
except as pertinent to the P(t) calculation.) Whenever it is time to change
the functional form of p(t), new values of the elements of P(t) and the Qj(t)
can be found, particularly since new functional forms for B;i(t) and K(t) are
also found at these times. An approximate form for N(t) is also to be chosen
to aid in the solution.

The nodal approach provides a much better "first guess" for
the shape function at t = t; then for the time-independent first choice of
Y described in Section C.1 of this chapter. In addition, this approach can
reduce the number of shape calculations needed to analyze a transient.
Since the shape calculations are the most difficulty by far, substantial
savings in computing time possibly can be made. The nodal approach is
not needed for the second iteration, since a linear shape function can now
be used. However, when the calculation passes to the next time interval,
with the new shape, the nodal method can again be used for the first
iteration.



CHAPTER VI
INTEGRATION OF THE MULTIMODE KINETICS EQUATIONS

Chapters III, IV, and V were concerned with various approximations
to effect the spatial integration of the multigroup diffusion equations. Each
of these approximations uses the method of weighted residuals to derive
the multimode kinetics equations, which must be integrated to complete the
solution.

The integral-equation technique of integrating the multimode kinetics
equations is discussed in this chapter. Particular emphasis is placed on
the method of undetermined parameters, since it is a weighted-residual
technique. Piecewise polynomial functions®' are chosen as trial functions
for N(t), and three weighted-residual criteria are discussed. They are col-
location weighting, subdomain weighting, and Galerkin weighting.

A. Formulations of Integral Equations

Conventional numerical-integration methods, such as finite-
difference or Runge-Kutta methods, have proved to be poor choices for
integrating the point-reactor model. Because the time derivative is multi-

plied by l/v. very small time steps must be taken to ensure a stable solution.

This is especially true for fast reactors, where v = 107 cm/sec or more.
Consequently, approximate methods based on integral-equation formula-
tions have been developed,7-“’65 which successfully overcome the finite-
difference time-step limitation. Most of these methods formally integrate
the point-reactor model and approximate the slowly varying portions of
the integrands with trial solutions. »

It is possible to write the point-reactor model in the quasilinear

form,?
- J
ASE +aN(t) = [pt)- Bt)+al N(t) + T A;Cj(t), (6.1)
j=1
and
by i
= = BjltN() - 3Cje), (6.2)

where a is a parameter. Equations 6.1 and 6.2 are now formally integrated
to obtain

t L Y 1
N() = Nito) expl-a(t- tol/A + f ["“’#

J
N(t') + ¥ lej(t')]exp[-a(t-t')/A]dt'. (6.3)
t

=
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and

t
Cj(t) = Cj(to) exp[-Xj(t-to)] + Ej‘/; N(t') exp[-xj(t-t'] dt'. (6.4)
0

The time-step limitation is overcome by approsximating the slowly varying
part in each integral. One such approximation % is the Taylor series

2
N(to £7) = N(to)+TN'(to)+% N"(ty) + ..., (6.5)

where 7 = t' - t;. The integrals in Eqs. 6.3 and 6.4 are then evaluated
term by term. The parameter a is arbitrary. A good choice has been
found to be®

a = B - pt). (6.6)

Another possible choice is’

G il (6.7)

Hansen's largest eigenvalue method’'® also can be derived from the
quasilinear form. In Hansen's method, the trial solution becomes

a = p-p(t) (6.8)

and
N(to+7) = N(to)e®T, (6.9)

where ® is the largest root of the inhour equation for an average reactivity
appropriate to each time step. In addition, Hansen also forms the following
trial solutions for the precursors:

Cj(to+ )= Cj(to)e®T. (6.10)

The success of the method of undetermined parameters,'®!! however,
does not depend upon the value of @, because it is not really a quasilinear
method. Instead of writing Eq. 6.1 and formally carrying out the integration,
we immediately assume a trial solution for N(t) and substitute it into the
point-reactor model. The resulting residual is then multiplied by weighting
functions, and the method of weighted residuals is applied. This enables the
undetermined parameters in the trial solution to be evaluated, thus com-
pleting the solution. Even if & remains in the formulation, it can be can-
celled at any stage of the calculation.
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Instead of illustrating the method of undetermined parameters with
the point-reactor model, we will use it to integrate the multimode kinetics
equations. This is done in Section B below.

B. The Method of Undetermined Parameters

The multimode kinetics equations are rewritten here for easy
reference:

i
Aﬁ = [p(t)- B()I N(t) + X AiCj(t), (6.12)
j=1
and
de =
= = Bj(tIN(t) - MC;(t), (6.13)
where

- J —-—
B(t) = Z 5j(t),
j=1

In addition, N(t) is an I-dimensional column vector of amplitude functions,
the Cj ( ) are I-dimensional vectors of precursor amplitudes, and A, p(t),
B:(t) are I x I matrices, where I is the number of modes used in the spatial
integration.
.
The method of undetermined parameters is now used for the temporal
integration. If Eq. 6.13 is substituted into Eq. 6.12, then

J dc,
aN. oo _]

j=1

If the values of dC; /dt were known, Eq. 6.14 could be integrated directly.
Equations 6.13 can be formally integrated over the time interval t; = t = t;4,

as follows:
t -
Cj(t) = Cj(ti) exp[-)»j(t-ti)]+f Bj(t')N(t') exp[-Xj(t-t')] dt'. (6.15)
Y

In addition, the following expressions for dC; /dt can be obtained by differ-
entiating Eq. 6.15:
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—3 = -XCj(t;) exp[-25(t - t;)] + Ej(t)N(t)

t
- kjf B(t')N(t') exp[-xj(t-t')] (ah ity (6.16)

i

The system represented by Eqgs. 6.14 and 6.16 can be solved in the
interval t; = t = t;4, by first expanding the amplitude functions in the trial

functions Ty (t) as follows:

K
RG] =0 Ay (6.17)
k=0

Each T(t) is a scalar function of time, so that each Ay is an I-dimensional
column vector. The vector A, is the value of the amplitude function vector
N(ti), so that To(t) is unity. Each element of each remaining A) must be
determined to complete the solution.

If Eq. 6.16 is substituted into Eq. 6.14, the following equation
results:

A o) Br)] 5
15 (£)- B(t) N(t) = Elxjcj(ti)exp[-xja—ti)]

t
+/ Ej(t')N(t') exp[-2(t- t')] dt]. (6.18)
L

The approximate solution, Eq. 6.17, can now be substituted into Eq. 6.18 to
obtain the residual

Ry (t) = A% - [p(t)- BOIN(t) - § x[ (t;) exp[-25(t - t;)]
=

U
+f B-j(t’)ﬁ(t’)exp[—)\j(t—t')] dt'|. (6.19)
i
The weighting functions Vi(t), k = 1, ..., K, can be used in the fol-

lowing weighted-residual method to determine the unknown constants in the
vectors Ay:



tits
f Vr(t)RN(t) dt =0, G RN, (6.20)
ti

Equation 6.20 is an example of the method of undetermined parameters.
Once the parameters in the Ay are determined, the calculation can be

repeated over the next time step, with ﬁ(tiﬂ) now serving as the vector A,.

C. Piecewise Polynomials as Trial Solutions

The approximate solution to the multimode kinetics equations is a
piecewise polynomial if, for each time step considered, the trial solution
is expressed as a Kth-degree polynomial.’’ The coefficients of the polyno-
mials are constant over a time step, but differ from one time step to the
next, hence the name piecewise polynomials.

The best known examples of piecewise polynomials are spline
functions®' of degree M, which are defined as Mth-degree polynomials
over each interval, such that the function and its first M - 1 derivatives
are continuous at each point where the polynomial coefficients change.
These points are known as joints. The most commonly used spline func-
tions are cubic splines, that is, M = 3.

Spline functions are not used in the ensuing development. Instead,
piecewise-polynomial functions are used for which the only continuity
requirements demanded are for the amplitude functions, not for any of
their derivatives. Such a choice has been successful in the past for point
kinetics.'?!' It is now extended to multimode kinetics. In the time inter-
val tj = t = ti4,, let the trial solution, Eq. 6.1%, be given by the polynomial

K
N(t) = T Aplt-t)k (6.21)
k=0
Then,
— K
anN > kAk(t-ti)k-i. (6.22)
dt e

If the system under analysis is nonlinear, the matrices p(t) and Ej(t) can be
approximated over the time interval by

p(t) = p(t;) + (t-t5)(0y +2p5t;) + pa(t - ti), (6.23)
and

Ej(t) = Ej(ti) + (t- ti)(Ejl+ZEjzti) 4 Ejz(t ) (6.24)
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The I x I matrices p;, Pz, ﬁ_jl’ and Ejz are evaluated by fitting results
generated from the feedback model to the forms given by Egs. 6.23 and 6.24.
The feedback occurs through the matrix operators D, A, and FT, which, for
nonlinear systems, are functions of the neutron flux. Therefore, the matrix
elements of p(t) and EJ(t) as defined by Eqgs. 3.29 and 3.30, become func-
tionals of the neutron flux. Egs. 6.21-6.24 can now be substituted into the
weighted-residual criterion, Eq. 6.20. The result is

tit1 K
0 f T v,(t){[km-m"" - plE)(E- 6 - (o +202t:)(E- 1)< - palt - )KH] Ay at
t k=1

i

i Jides:
/ Ve(®)p(t1) + (01 +208:)(¢ - t5) +p2(t - 62 Ao - T d—;} at. (6.25)
5

i I

Equation 6.25 yields IK simultaneous algebraic equations, from
which the elements of each of the Ay k= GG SK Seantbelfound s lihe
weighting functions, V(t), must be specified before the solution can be ob-
tained. Section D below considers three possibilities: collocation weighting,
subdomain weighting, and Galerkin weighting.

D. Choices of Weighting Functions

Before the choices of weighting functions are considered individually,
the I-functions,!! which appear in each type, are defined by

tity
I m(4t;) =f exp[-24(ti4; - 7)] 7™ dr, (6.26)
i
where
Ati = iy = t;.
Two useful properties of the I functions are
exp[-xjt] = = lej,o(t), (6.27)

and
L m(t) = = [tm_mlj,m_l(t)], m =1. (6.28)

1. Collocation Weighting

The residual Ry(t) is allowed to vanish at the K points t,.,

r = 1, ..., K, all within the time interval. The weighting functions are the
Dirac delta functions
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NSt =0t~ e = 1, ..., K. (6.29)
When Eqgs. 6.21-6.24 are substituted into Eq. 6.16, and Eqgs. 6.27 and
6.28 are used, the following is obtained (where At = t- ti):

d_tj = -chj(ti) exp[-Xj(At)] * {Ej(ti)[l -lej,o(At)]

+ (Bju+2Bjety)[ Bt - N1, (8)] + sj,[(m)z
- k

5 lej.z(At)]}Ao + kz {Bj(ti)[(At) - lej,k(m)]
=1

+ (Ejl"’zﬁ—jzti)[(At)kH - N, kﬂ(At)]

i ﬁ_jz[(At)k+ - )‘JIJ k+z(At)]} (6.30)

Equations 6.29 and 6.30 can now be used in the weighted-residual criterion,
Eq. 6.25, to derive the algebraic equations from which the A} can be de-
termined. These are

K
) (Ak(At,)“" - [p(tixm,)k + (o) +2p5t; (Dt JKH

-

J
+ pz(Atr)k“]+ 5 {Ej(ti){m - Ayl k(Bty)]
j:l

+ (Ejl+zﬁjzti)[(At,)k+ - A5,k At,)] - ﬁjz[(At Ytz
& AL IJ k+Z(Atr)]}> Ay - (p(ti) + (Py +2P,t;) Aty

J —
+Pa(Btr) - ¥ {ﬁj(ti)ll - Ajlj,of Oty )]

=
+ (B + 2Bt ) Bty - 215, (Btp)] + Byl (Bt )

- A, z(At,)]}) By = z A5C;(ts iy - A I o (At} (6.31)
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where

N CIE Dy SR R e T (6.32)
Zl‘—l

The choice of collocation points given by Eq. 6.32 lends itself
very well to time-step halving procedures, which control the error accumu-
lation to ensure a stable solution. One such procedure is described in
Appendix B. When the vectors A} are determined using Eq. 6.31, the values
}‘JC (ti+1) can be determined directly from Eq. 6.12 by substituting the values
N(tit,), dN/dt(tl_H) P(ti+;), and B(tj4+,) just obtained. The calculation can now

be repeated for the next time step.

2. Subdomain Weighting

The subdomain method was first used for point kinetics by

Brittan'® and Kaganove.!! The weighting functions are the unit step functions

Vo(t) = U(t) - Ut-tp), Er— ] N (6.33)
where each t;. is given by Eq. 6.32. The subdomains are therefore the whole
time interval, the half-interval, the quarter-interval, etc., until K intervals
have been chosen. As with the collocation method, the time-step halving
procedure described in Appendix B can easily be used for this choice of

subdomains.

For the rth subdomain, the limits of integration in Eq. 6.25 be-
come the points t; and t,. For each of the K resulting equations,

e
f =2 dt = Cjltr) - Cjlty). (6.34)

Equations 6.13 and 6.30 can be combined to obtain

Cjltr) = Cjlti) exp[-2jAt,] + [B;(t;)15,0(Atz) + (Bja +2Ejzti) La(aty) + Ejzlj,z(Atr)] Ao
K _— -
Z_: J k(Aty) + (ﬁ‘_]l +Zﬁjztj) Ij,k+l(At1‘) + Ejzlj,k+z(Atr)] Ay, (635)

which, in turn, can be substituted back into Eq. 6.34. When the result is
substituted into Eq. 6.24, together with Eqs 6.21-6.24 and 6.33, the following
is obtained:



K
=2
k=1

ABe ¥ - plt;)(Bty Kt X (P +2Pat;)(Bt K12 py (At KH
) k+2 b oy

J
i z [Ej(ti)lj,k(Atr) y (Ej1+25jzti) Ij,k+l(Atr) +, Ejzlj,kﬂ(Atr)]} Ax

J=1

(PL+2p2t)(Ate ) pa(Aty)?
- p(ti)Atl‘ % < % 3

I M

[BJ( )Ij,o(Atr) g (EJ] +2-ﬁjzti) Ij,l(Atr) + Ejzlj,z(Atr)]}Ao

.

- Z XjCj(ti)Ij,o(Atr), r (6.36)

1
A

Equation 6.36 represents IK simultaneous equations, which can
be solved to determine the elements of each vector Ay. The values of
Cj(ti+)) can be found using Eq. 6.12, as was outlined for collocation weighting
in Section D.1 above.

3. Galerkin Weighting

For the Galerkin method, the weighting functions are the trial
functions; that is,

Ylb) = -8, =1, ..K (6.37)

Consequently, each weighting function is continuous over the entire time
interval. Furthermore, terms of the form

ti+1 de
Jj,r(Ati) =f (t-ti)r T dt (638)
5
appear in the weighted-residual criterion, Eq. 6.25. These integrals can be

evaluated with the aid of a recursion formula, which will be derived using
partial integration.
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To begin the derivation, observe that
(61515
T5,0(0t) = Cjltip) - Cj(t;)- ( )

Equation 6.38 can be integrated by parts to obtain

t
1+1
r-1
Jj,r(Ati) = (Ati)rcj(tH-l) - r/ (t-t;) Cj(t) dt. (6.40)
&

If Eq. 6.13 is used to eliminate Cj(t) in the integrand, and then Eq. 6.38 is
used, Eq. 6.40 becomes

tit
= - €T
Jj,r(Ati) = (Ati)rcj(tiﬂ) - )\%/: (t-t;)" y ﬁj(t)N(t) diee X—J Jj’r_l(Ati).

i

(6.41)

When Eqgs. 6.21 and 6.24 are used, the following recursion formula can be
obtained from Eq. 6.41:

3 K Ej(ti)(Ati)k+r (Ej1+ZEjzti)(Ati)k+r+l . Ejz(Ati)k+r+z i
T5,2(84) = (84)7Cj(tin) - o k): k+r kK+r+1 kK+r+2 k
=0

+% T ea(Bt) T =LK (6.42)
j

The weighted-residual method is now applied by substituting
Eqgs. 6.21-6.24 and 6.37 into Eq. 6.25 to obtain

C B aan)T p)ag)RTH (o +2p,t J(At)KYTR2  py (At A
O‘E k+r : k+r+1 k+r+2 k+r+3 k
= L
3
p(t)(At)TH  (py+2pti)(B85)"H  py(Ag)TH 5
[ L + = — A0+jz_le,,(Ati), Tl e B (6.43)

where the J',r(Ati) are determined from the recursion formula, Eq. 6.42.
The recursion relationship must be used for each value of r to obtain the
equations necessary to solve for the Aj explicitly. This is not difficult to
do when using a digital computer. Indeed, recursion formulas are ideally
suited for digital computation. The time-step halving procedure can still be
used in conjunction with the Galerkin equations, that is, Egs. 6.43 and 6.42,
but it is not intrinsically connected with the choice of weighting functions,
as with collocation and subdomain weighting.



CHAPTER VII

SPACE-TIME ITERATION USING THE METHOD
OF UNDETERMINED FUNCTIONS

A. Description of the Method

In Chapters III, IV, and V, the method of undetermined functions was
used to perform spatial integrations in derivations of the multimode kinetics
equations. Then, in Chapter VI, the method of undetermined parameters was
used to integrate the multimode kinetics equations, thus completing the solu-
tion to the space-time problem. In this chapter, an iterative method,*? which
uses the method of undetermined functions, will be applied to perform both
spatial and temporal integrations. The method, described in detail in Chap-
ter II, yields solutions that are independent of the initial choices of trial
functions. Accuracy of the solutions thus depends only upon the number of
trial functions chosen.

The technique of space-time iteration begins by applying the method
of weighted residuals to Eqs. 3.1 and 3.2 to obtain the multimode kinetics
equations (see Chapter III). These are then solved for the amplitude func-
tions, presumably by using one of the methods discussed in Chapter VI.

The amplitude functions then serve as trial functions in a semidirect method
to determine new values for the time-dependent shape functions.

Since the amplitude functions are determined in Chapter III, only the
method of recalculating the shape functions is outlined in this chapter.
A one-energy group model is used for simplicity. The precursor equations
can be formally integrated with respect to tht.a time variable to obtain

t

nj(x.t) = mj(x,te) exp[-Xj(t-to)] + ﬁj[ FT(x,t')p(x,t') exp[-Aj(t-t')] dt'.
0

(7.1)

Equation 7.1 can then be substituted into Eq. 3.1, which becomes

d(x,t)
ot

= [v *D(x,t)V - A(x,t) + (1 - B) xPFT(x.t)] #(x,t)

J t
e [nj(x.to) exp[-2j(t - to)] + ﬁjL FT(x,t')0(x.t') exp[-Aj(t - t')] dt']- (7.2)
j:l

To perform the temporal weighted-residual method, the following weighting
functions are introduced:

T{t)-= [ Tt} ErlE)]- {7.3)
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The weighted-residual method can now be applied in the usual manner to
Eq. 7.2 to obtain

te ts
f 1T L i) B ae - f TTm{[v DY - A+ (1- B) XpFT| ¥ laINCe)
to to
J t
+ _Z ﬁj/; FL(x,t")y(x)N(t") exp[-xj(t-t')]dt}dt
= 0

Ef
f TT(t)T)j(x,to) exp[-xj(t- to)] dt. (7.4)

ety
Equation 7.4 is used to solve for the shape functions %;, i = 1, ..., I,

appearing in the matrix 9(x). For a one-energy group approximation, Eq. 7.4
can be rewritten as

tf
5 / TT(t){iv aNt [V~D(x,t)V S Akt - E) XPFT(x,t)]NT(t)

dt
to

i t
+ 3 ﬁj/ FT(x,t)NT(t') exp[-2j(t - t')] dt'} dt 9T (x)
to

j=

3
+ 2 TH(E)nj(xto) expl-2(t-to)] d (7.5)
J=1

Furthermore, Eq. 7.5 can be written in the matrix shorthand form
d dyT
&[E(X)K <x)]+ M(x)yT(x) + P(x) = 0, (7.6)

where the I x I matrices E(x) and M(x) and the I-dimensional column vector
P(x) are defined by

tf :
E(x) =f TT(t)D(x,t)NT(t) dt, (7.7)

to



te
M(x) = f TT(t>{[(1 - B) XpF T(xt) - AGxt) - — ;‘_t] NT(t)
to
J t
L 2 ij FT(x,t )INT(t') exp[-2(t - t")] dt'} dt, (7.8)
J=1 to
and
J tf
P(x) = ¥ nj(x.to) TT(t) exp[-Xj(t - to)] dt. (7.9)
a5t to

Equation 7.6 is similar to the matrix formulation of steady-state
multigroup diffusion theory. One vital difference, however, is that in multi-
group diffusion theory, E(x) is a diagonal matrix, whereas in Eq. 7.6, it is
a full matrix. Nevertheless, Eq. 7.6 can be solved as a system of inhomo-
geneous, second-order, ordinary differential equations to obtain the new
values of ¥;(x). These new values can, in turn, serve as trial functions to
recalculate the amplitude functions Nj(t), using the method described in
Chapter III. The iteration is carried out until a converged solution is
obtained.

B. A Simple Illustration

Consider the one-dimensional bare reactor shown in Fig. 3. Suppose
it is initially critical, but then a uniform step‘ decrease in the absorption

$ox) = cos (7=

Fig. 3

Initial State of a One-
dimensional Bare Reactor

x
-a o [ 113-1896

£
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cross section takes place. Neglect the delayed neutrons for simplicity,
so that Egs. 3.1 and 3.12 become

199(at) | 0t L (pT_a) e, (7.10)
v ot O x?

and
¢(-a,t) = ¢(a,t) = 0. (7.11)

Since the reactor is initially critical, the initial condition for the flux is
®
d(x,0) = ¢o(x) = cos 55 (77 1172)))

It is well known that, for a uniform perturbation, the flux shape will
not change. Nevertheless, a one-mode approximation is chosen, in which
the trial function is not the initial distribution ¢4(x). Instead, choose

b = Y(x)N(t), {128
where
xZ
Y(x) =1 - = (7.14)

The trial function satisfies the boundary conditions, so that a boundary
residual need not be formed. The object of this example is to show that
the iterative scheme seeks and finds the exact solution, even though an in-
correct shape function is used as the initial guess.

The amplitude function N(t) can be found by solving the multimode
kinetics equations. The initial condition N(t;) is found by using Eq. 3.20.
Choose subdomain weighting, W(x) = 1, so that Eq. 3.20 becomes

= X =0
f cos —— - (1 - ?) N(tp)|dx = O, (731 5))

from which

N(to) = (7.16)

Sl

The generation time and the reactivity are found from Egs. 3.28 and 3.29,
so that



a 2
1 - 4a
A = g (102, £k S
f v(l az)dx 3o (7.17)

and

a
o =f [.i_?+(FT A)(l--z-z-)]dx E '4TD+4T(FT A)iraifnas)
-a

If Eq. 7.18 is divided by Eq. 7.17, the result is

3D
_X B V(FT S e a_z). (7.19)

Equation 3.32 can now be easily solved for the amplitude function N(t). The
solution is

N(t) = N(to) exp[(o/A)(t-to)] = -;- exp[v(FT - A-3D/a%)(t - t)]. (7.20)

The first guess for the flux is thus

d(x,t) = %(1 - Ei) exp[v(FT - A -3D/a?)(t - to)]. (7.21)

The improved solution for ¥%(x) will now be sought, using Eq. 7.20 as a trial
function in Eq. 7.6. o

Since there are no delayed neutrons, P(x) = 0, and Eq. 7.6 is homo-
geneous. An eigenvalue problem consequently must be formed to solve
Eq. 7.6. To evaluate E(x) and M(x) (both constant for this example), the
weighting function T(t) = 1 will be chosen. This choice corresponds to
subdomain weighting. Therefore, E(x) and M(x) become

DN(to)

P/

E(x) = {exp[(p/A)(ts - to)] - 11, (1.22)

and

ET .
M(x) = N(to)< / 2 {expl(p/A)(te - to)] - 1} - —{exp[(p/A)(tf to)] - l}>

(7.23)
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so that Eq. 7.6 becomes

dzu Bl A g y :
= +[—-A— = 'v—ﬁ] Y(x) = 0. (7.24)

Equation 7.24 is a homogeneous equation, which recurs in each spatial
iteration. To obtain a nontrivial solution, introduce a parameter A% in the
following manner:

T
:Z_’/Z’+[ET'A_ -."_‘{%- xz] ¥(x) = 0. (7.25)

The parameter \? is evaluated for each iteration by using the boundary con-
ditions. As the iterative scheme progresses, each succeeding value of \?
should be smaller than the preceding value. If )? vanishes, then the con-
verged solution has been obtained. Equation 7.25, then, amounts to an
"eigenvalue problem" for each iteration.

Equation 7.19 can be substituted into Eq. 7.25 to obtain

74
i;% + <% = x2> Y(x) = 0. (7.26)

By requiring the boundary condition, Eq. 7.11, to be satisfied, one can show
that the solution is

X

Y(x) =€ cos 5= (G 270
3 - 7r7‘/4
)\'Z = = ; (728)
and
fli) = € o TZT_;‘ exp[v(FT - A - 3D/a?) t]. (7.29)

Finally, the constant C is evaluated by applying the weighted-residual method
to the initial residual:

a
X X
f el C cos == = 0,' (7:80)

=l

fromwhichiGR=E1
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Further improvement can now be made for N(t) by using the trial
function

Y(x) = cos Tr—:. (7.31)

The solution proceeds along the same lines as outlined in connection with
Eqs. 7.17-7.21. This time, however,

m°D
o/A = v(FT-A- ?), (7.32)
2
N(t) = exp V(FT-A-—)(t-to). (7.33)
and
2
¢(x,t) = cos g—: exp v(FT -A-Z—;)(t- to) |- (7.34)

Equation 7.34 is the well-known exact solution to the problem. If this fact
were not known, however, another calculation of the shape function would
again yield the solution given by Eq. 7.27. The parameter \* would now
vanish, indicating that the converged solution has been found.

C. Possible Applications of Space-Time Iteration
L

Space-time iteration is ideally suited for use with temporally
discontinuous trial functions in the analysis of nonlinear transients. In the
quasistatic method, for example, space-time iteration could be used to
improve the shape function over the ith time step, instead of using Eq. 5.24.
Since there is only one mode, however, the shape function would be charac-
teristic of an instant in time somewhere within the ith time interval. This
fact suggests that space-time iteration with only one shape function is
inferior to using Eq. 5.24. However, if more than one time-independent
mode were used, as in temporally discontinuous synthesis methods, then
space-time iteration would be an extremely valuable tool because it elimi-
nates the need to choose a "good" set of trial functions.

Another possible application could be to use space-time iteration in
the full three-dimensional, time-dependent problem. Trial functions could
initially be chosen in the three space dimensions in order to calculate the
amplitude functions. Then, the amplitude functions, together with the trial
functions in two of the space dimensions, could be used to improve the shape
functions in the remaining space dimension. The procedure would then be
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continued to improve the shape functions in each remaining space dimension.
Then, the second iteration would begin by calculating improved amplitude
functions using the improved shape functions as trial functions, and would
continue by recalculating the shape functions for each dimension in turn.

The procedure would become, in effect, a series of one-dimensional calcula-
tions performed to solve a four-dimensional problem. When a nonlinear
transient is analyzed, the temporally discontinuous trial function technique
could also be incorporated.

Multichannel-synthesis methods could also benefit from space-time
iteration. In the nodal method, for example, shape functions characteristic
of an instant of time within the time interval would be used instead of the
initial shapes. Each node would presumably be described by a shape func-
tion characteristic of a time different from that of the other shapes.
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CHAPTER VIII
NUMERICAL RESULTS

A, Introduction

In the previous chapters the approximate methods of solving the
space-time problem were described as weighted-residual methods, dif-
fering only in the manner of choosing trial functions. Methods of choosing
weighting functions were not compared, except for occasional implications
that the variational method and the Galerkin method seemed to be superior
to other choices. In this chapter, various methods of choosing weighting
functions are compared numerically. The results are primarily intended
to indicate the degree of sensitivity of the weighted-residual solutions to
the choice of weighting functions.

A computer program, entitled WEIRD, was written to perform the
calculations. It integrates the one-energy-group diffusion equation. Trial
functions and weighting functions for the space dependence are inputs. The
multimode kinetics equations are then formed and integrated using the
method of undetermined parameters. Piecewise polynomials are used as
the trial functions for the time integration. Second-degree polynomials and
subdomain weighting are used to obtain the results that will be reported.
The time-integration routine also has an automatic time-step selector,
which is described in Appendix B.

Comparisons are made for two of the approximate methods. These
are continuous synthesis and multichannel synthesis. Nodal methods are
treated as special cases of multichannel synthesis. In the studies of con-
tinuous synthesis, the Galerkin method is compared with two choices of
subdomain weighting and with a set of weighting functions that satisfy the
boundary conditions but are otherwise chosen somewhat arbitrarily. No
more than two trial functions are considered for any problem. Studies of
the multichannel synthesis method indicate the degree of improvement in
the approximation when the number of synthesis regions is increased. In
addition, partial-current weighting and surface-cancellation weighting of
the interface conditions are compared for the nodal method.

Only one reactor is analyzed in this study. It 1s a 240-cm slab
reactor, which, for convenience, is treated in a symmetric manner: That
is, the only transients studied result from perturbations symmetric about
the center of the reactor so that only half the reactor is considered. Hence,
a zero-current boundary condition is imposed at the origin. The parameters
for criticality are listed in Table I, and the initial flux shape is shown in
Fig. 4.



80

TABLE I. Parameters for Criticality
Region 1 Region 2 Region 3
Parameter (0-15 cm) (15-60 cm) (60-120 cm)
B;fem 1.69531 1.6953]1 1969531
vZg cm™! 0.0194962 0.0194962 0.0194962
2 S icrme 0.0194962 0.0194962 0.0183343
v, cm/sec 10° 10° 10°
== l I I T l
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Fig. 4. Shape Functions Used in Analysis of Transients

Two transients are analyzed. Both are initiated by a ramp change
in the fission cross section in Region 1 (0-15 cm from the origin) for

TABLE II.
at End of Ramp

Region 1 Fission Cross Sections

Fission Cross

Section Transient 1

Transient 2

V3¢ cm™! 0.0201461

0.0202962

0.1 sec, which is then held
constant for the remainder of
the transient (up tot = 1 sec).
The final values of the fission
cross section in Region 1 are
given in Table II. One group
of delayed neutrons is used,
with B = 0.0064, and \ =
0.08 sec™!. When the tran-
sients were analyzed with the

"exact" finite-difference computer code WIGLE,? it was found that Tran-
sient 1 was a subprompt critical burst, while Transient 2 was superprompt
critical. The WIGLE solutions also yielded the final shapes shown in

Fig. 4.



To compare various choices of weighting functions, good sets of
trial functions are used. The initial and final shapes for Transients 1 and
2 are two such sets. To study multichannel synthesis, though, a poor set
of trial functions is chosen. One possibility is to choose the initial shape
along with the final shape from a transient initiated in some other region
of the reactor. One such choice is shown in Fig. 4. To obtain this shape,
the fission cross section of the 15-30-cm region was increased in a ramp
until t = 0.1 sec, while the absorption cross section in the first region
was also being increased. The transient was then continued until t = 1 sec
and then terminated. This set of shape functions is called the "poor" set of
trial functions. This set is also used as weighting functions in the
continuous-synthesis comparison.

A proper comparison of the space-time approximate methods
should consider both amplitude and shape changes. One way of doing this
is to form the following amplitude function at time t:

W(x, t)P(x, t) dx

P(t) = ; (8.1)

W(x, 0)p(x, 0) dx
x

where ¢(x,t) is given by Eq. 3.3, and P(t) is a scalar amplitude function
characteristic of the entire reactor. For purposes of comparison with
point kinetics, the choice

W(x, t) = d(x, 0) (8.2)

is made for each case treated. The shape functions at any time t can then
be determined by dividing ¢(x,t) by P(t):

Y(x, t) = E—g‘-('z;-). (8.3)

Another useful parameter is the reciprocal period, given by

e I (8.4)
at) = 30 ar-
Equation 8.4 can be integrated to obtain
t
P(t) = P(0) exp| [ a(t) ar'|. (8.5)
0

For the transients being analyzed in this report, the reciprocal period ap-
proaches an asymptotic value after the ramp change in fission cross section
has terminated. This value can be determined by using Eq. 8.5 to obtain
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ii P(t,)
Qag = ——1 i iy i (8.6)
as Go n Blt,) t 2 1
where t; and t, are times after which the reciprocal period has become
asymptotic. These times can be found without difficulty by noting when the
shape function has approached its asymptotic distribution.

The asymptotic reciprocal periods for each approximate method
can be compared to see whether the error is bounded. This dssthetcase
only if the reciprocal period is (almost) identical to the exact value. If the
error is bounded, then the ratio of the approximate value of P(t;) to the
exact value gives an error measure.

B. Continuous Synthesis

The purpose of these studies is to compare different weighted-
residual criteria in an attempt to discern the effect of weighting-function
choice on accuracy. Both transients are analyzed to see if the condition of
prompt criticality has any effect on the approximate methods. In the anal-
ysis of Transient 1, the initial shape and the final shape for Transient I
are chosen as trial functions. Since these "bracket" the true solution,
accurate results are expected, and indeed are obtained, as is shown in
B =ibille ST

TABLE III. Transient 1 Results att = 1 sec, Using
Initial and Final Shapes as Trial Functions

Point

Exact Galerkin Subdomain 1 Subdomain 2 'Boor! Kinetics
Reciprocal period, sec™! 19T 1ol 1.90 1.92 19T 0.49
Amplitude function 102.90 102.85 102.59 103.90 102.20 10.87
Amplitude for mode 1 - 0.0056 0.0259 -0.254 0.0324 10.87

Amplitude for mode 2 - 102.84 102.56 104.15 102.17 -

The title Subdomain 1 refers to the choice of subdomains as unit
step-functions defined as unity in the regions 0-15 and 15-120 cm from
the origin. Subdomain 2 uses 0-60 and 60-120 cm as the subdomains.
"Poor" weighting refers to the choice of the initial shape and the shape
function characteristic of a transient initiated in the 15-30-cm region of
the reactor (see Fig. 4). The fact that the amplitude of mode 2 is dominant
for all cases (except point kinetics) indicates that each approximation has
also selected the proper shape att = 1 sec. This fact is also true for
intermediate times, although the results are not tabulated here.

The poor results of point kinetics re-emphasize the purpose of
space-time approximations. Although the shape change (or "flux tilt")
shown in Fig. 4 does not appear to be substantial, it has a profound effect



on the reciprocal period and hence the amplitude function, as Table III
shows. Transient 1, or one similar to it, could very well be initiated in an
actual reactor. It would seem from point kinetics that the transient is not
too severe. Actually, it is nearly a prompt critical burst (p = 97.5 cents).
Point kinetics calls it an 86.0-cent burst. A slightly higher increase in
vZ¢ would have caused a superprompt critical burst, which point kinetics
could not have predicted.

Table IV and Fig. 5 contain the results from choosing the "poor"
shapes astrial functions. Whenthese functions are also used as the weighting

TABLE IV. Transient 1 Results att = 1 sec,
Using "Poor" Trial Functions

Transient Point
Exact Weighting Galerkin Kinetics

Reciprocal period, sec™! 2171 1.89 0.52 0.49
Amplitude function 102.90 100.34 11.60 10.87
Amplitude for mode 1 - -216.44 %.51 10.87
Amplitude for mode 2 - 316.78 2.08 -
W | T | | | I T
WEIGHTING FUNCTIONS ARE SHAPES OF
=B / TRANSIENT | o
EXACT
.
10 =
GALERKIN WEIGHTING
z
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Fig. 5. Transient 1 Shape Functions at t = 1 sec, Using "Poor” Trial Functions
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functions, that is, when Galerkin weighting is used, very little improvement
is made over point kinetics. If, on the other hand, the true shapes of Tran-
sient 1 happen to be chosen as the weighting functions, the reciprocal period
and the amplitude function come very close to the exact values. However,
the resulting shape function is incorrect, as can be seen in Fig. S iEse
results can be explained in terms of the variational method described in
Chapter IIIL.

The flux and the adjoint flux both appear in each term of the func-
tional given by Eq. 3.45. The functional is stationary, so that its first vari-
ation with respect to either ¢ or ¢* vanishes. In either case, approximate
solutions (such as those given in Egs. 3.3 and 3.46, where ¥;(x) and Il/r(x)
are trial functions) for both ¢ and ¢* must be used to determine the value
of the functions. Furthermore, the accuracy of the value of the functional
depends upon how well each set of trial functions is chosen. This argument
can be extended to any weighted-residual method because the variational
method is really two weighted-residual methods, in which the trial functions
for the real problem are the weighting functions for the adjoint problem,
and vice versa.

Taking the first variation also provides a means of determining the
undetermined amplitude functions for each problem. If either set of trial
functions is "good," both sets of amplitude functions will be determined
fairly accurately. If both sets of trial functions are good, the amplitude
functions are determined even more accurately. If both sets are "poor,"
neither set of amplitude functions is determined accurately. On the other
hand, the shape of the true flux is poor if poor flux trial functions are
chosen, no matter how good the weighting functions are. One conclusion
that can be drawn from the above results and discussion is that, if a good
set of trial functions is chosen for the flux, Galerkin weighting always gives
an accurate solution for the flux and for the reciprocal period. In this sense,
Galerkin weighting is good strategy.

When the initial and final shapes of Transient 2 were chosen as trial
functions for Transient 2, results similar to those obtained in the analysis
of Transient 1 were obtained. These are shown in Table V. Notice that
Galerkin weighting is nearly exact. Table VI contains the results when the
shape functions from Transient 1 are chosen as trial functions to analyze

TABLE V. Transient 2 Results at t = 1 sec, Using Initial and Final Shapes as Trial Functions

Point
Exact Galerkin Subdomain 1 ~ Subdomain 2 "Poor" Kinetics

Reciprocal period, sec™] 29.51 29.51 29.71 29.44 29.52 8.84
Amplitude function 394x 1012 393x102  4px102  370x102  392x102 487x100
Amplitude for mode 1 - 386x 108  -3.08x1010  556x10°  -7.69x108  4.87x 104

Amplitude for mode 2 - 393x1012  475x102  369x102  393x1012 -




TABLE VI. Transient 2 Results at t = 1 sec, Using Transient 1 Shapes as Trial Functions

Point
Exact Galerkin Subdomain 1  Subdomain 2 *Poor* Kinetics

Reciprocal period, sec™l  29.51 29.48 2.8 2.3 29 8.8
Amplitude function 394x102  32x102  524x102  343x1022  245x 102  a87x 100
Amplitude for mode 1 - -956x 1011 -135x102  -g2ax10ll  -sasx101l  ag7x 100

Amplitude for mode 2 - 478x102  659x102  425x102  300x 1012

Transient 2. The Galerkin method is clearly superior to the other methods
in this case. In addition, "poor" weighting does not do as well as before.
Note that amplitude 1 is negative and has a substantial magnitude in all
cases. However, when the solution is formed for each approximation using
Eq. 3.3, and when Eq. 8.3 is used, each approximation gives nearly the cor-
rect flux shape. Figure 6 shows the total flux att = 1 sec for each approxi-
mation. Subdomain 1 weighting overestimates the total flux, although each
gives nearly the correct flux shape. Because of this, it may be concluded
that, when the trial functions become "less good," a good choice of weight-
ing functions becomes more important in obtaining an accurate solution.
Furthermore, the best possible choice of subdomains is usually not clear,
indicating that Galerkin weighting is sounder strategy than subdomain
weighting.

| [ T [ [ T I
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_ EXACT
a < —
~
) ¥
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x SUBDOMAIN 2 o
= il = (0-60cm, 60-120cm)
“w
= "POOR" WEIGHTING wad
A g —
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DISTANCE FROM CENTER OF REACTOR, cm
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Fig. 6. Transient 2 Flux Distribution at t = 1 sec, Using
Transient 1 Shapes as Trial Functions
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C. Multichannel Synthesis

1. Nodal Approximations

Studies of the nodal approximations are undertaken here for

two reasons: to determine the degree of improvement as the number of
nodes is increased, and to com-
TABLE VII. Interface Locations for patc partlal'current and surface-

Multichannel Approximations cancellation weighting of the
interface conditions. Galerkin

weighting is applied to the

Number of

Channels Interface Locations, cm from Origin
equation residuals. Table VII
; ;5 s lists the interfaces chosen for
5 4 :
0 15 30 60 the various nodal approxima-
5 il5 30 60 90 tions. Tables VIII and IX com-
4 o S L Gl Bl Tk pare the reciprocal periods and
10 7 15 22 30 45 60 75 90 105

amplitude functions for Tran-
sients 1 and 2, respectively.
Partial-current weighting does much better in all cases. Indeed, five-node
partial-current weighting is more accurate than ten-node surface-
cancellation weighting. Figure 7 shows the shape functions of Transient 2
att = 1 sec for the ten-node partial-current and surface-cancellation
weightings. The partial-current shape is much closer to the true shape
than is the surface-cancellation shape. The jump discontinuities appear at
the nodal interfaces as a natural consequence of the use of nodal methods.
A similar set of curves can also be drawn for Transient 1.

TABLE VIII. Transient 1 Results att = 1 sec for Nodal Approximations

1

Reciprocal Period, sec” Amplitude Function

Surface Partial Surface Partial

Cancellation Current Cancellation Current

Exact 120 1201 102.90 102.90
Point kinetics 0.49 0.49 10.87 10.87
Two nodes 0562 0.60 11.54 14.17
Five nodes 0.56 0.80 12T, 2137
Eight nodes 0.60 1.04 14.23 32.99
Ten nodes 0.64 858 15.43 70.06

TABLE IX. Transient 2 Results att = 1 sec for Nodal Approximations

Reciprocal Period, sec™! Amplitude Function

Surface Partial Surface Partial

Cancellation Current Cancellation Current
Exact 29.51 29.51 394xalol2 3.94 x 102
Point kinetics 8.84 8.84 4.87 x 10* 4.87 x 10*
Two nodes 9.83 12.99 i3 i102 1.71 x 108
Five nodes 11.28 17.87 3.93 x 10° 1.23 x 10®
Eight nodes 12.67 21.55 1.29 x 108 3.19 x 107
Ten nodes 13.78 26.70 3.42 x 10° 3:17 x 101
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Fig. 7. Transient 2 Shape Functions at t = 1 sec for 10 Nodes

Surface-cancellation weighting is a very poor choice for nodal
methods, whereas partial-current weighting does quite well. However,
when a good set of trial functions is used, nodal methods in general seem
to be inferior to the synthesis approach. One possible explanation for the
relative success of partial-current weighting is that, in diffusion theory,
the neutron leakage from one region to another is given by the partial cur-
rent at the region interface. On purely mat}:ematical grounds, however,
there seems to be no clear reason for preferring one type of weighting over
the other. One important conclusion can be drawn from these studies: The
manner of weighting the interface residuals is crucial to the success of
multichannel synthesis. The entire area requires much more study for
clarification.

2. Two Modes in Each Channel

The main purpose of the two-mode multichannel synthesis
studies is to determine how well multichannel synthesis can do when a
"poor" choice of trial functions is made. The trial functions are (1) the
initial shape, and (2) the final shape for the transient initiated in the region
15-30 cm from the origin (see Fig. 4). Galerkin weighting is applied to the
differential equation and partial-current weighting is used on the interface
residuals. Tables X and XI list the reciprocal periods and amplitude func-
tions for each transient. Table VII gives the interface locations. Note
that single-channel synthesis is little better than point kinetics.
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TABLE X. Transient 1 Results att = 1 sec
for Multichannel Synthesis

Reciprocal

Period, Amplitude

sec™! Function
Exact 1.91 102.90
One channel 0.52 11.60
Two channels 0.93 26.88
Three channels 1.24 44.15
Four channels 1.24 44.23

TABLE XI. Transient 2 Results att = 1 sec
for Multichannel Synthesis

Reciprocal

Period, Amplitude

sec”! Function

Exact 29.51 3.94 x 102
One channel 9.92 1.24 x 10°
Two channels 20051 1.26 x 10°
Three channels 24.56 4.64 x 10'°
Four channels 24.58 4,72 x 10

There is virtually no improvement for either transient when
the number of channels is increased from three to four. This is because
the fourth channel was added where it was not really needed. If three chan-
nels had been placed in the inner 30 cm, a four-channel approximation would
probably have done much better. In practice, however, it seems advisable
to choose channels in a symmetric manner in order to be able to handle
nonlinear transients which can cause drastic shape changes.

The greatest improvement is shown when the number of chan-
nels is increased from one to two. This fact is even more apparent when
the shape functions, shown in Fig. 8, are considered. The shape function
for one channel is completely incorrect and is close to point kinetics. It
is much better for two channels, and better still for three channels. The
shape function for four channels is identical to that for three channels.

The discontinuities arise naturally at the interfaces between channels due
to the nature of the approximation. Figure 8 is for Transient 2, but a simi-
lar result holds for Transient 1.
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Fig. 8. Transient 2 Shape Functions at t = 1 sec for Multichannel Synthesis

The above discussion indicates that multichannel synthesis is
capable of yielding a reasonable approximation even with a poor choice of
trial functions. Some care should be taken, however, in choosing the
channel interfaces. Furthermore, care should be taken in the choice of
the method of weighting the interfaces.
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CHAPTER IX
CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

A. Conclusions

The point-reactor model, modal-expansion methods, synthesis
methods, variational methods, multichannel-synthesis methods, temporally
discontinuous methods, and quasistatic methods of solving the time-
dependent neutron-diffusion equations can all be thought of as weighted-
residual methods. They differ only in the manner in which their trial
functions are chosen. The multimode kinetics equations can be used for
the time integration in each method. For self-adjoint systems. the varia-
tional method and the Galerkin method are identical. For non-self-adjoint
systems, the variational method is equivalent to solving both the real prob-
lem and the adjoint problem simultaneously using a weighted-residual
method for each. The trial functions for one are the weighting functions for
the other.

There does not seem to be a need for seeking variational principles
for nonlinear systems. They are difficult to find, and do not yield much
more information than the Galerkin method. Therefore, a weighted-residual
procedure should be adopted from the outset.

When spatially discontinuous trial-function schemes are adopted, the
interface conditions must be treated by a weighted-residual method. Partial-
current weighting seems to be a better choice than surface-cancellation
weighting in this respect. Many other possibilities could have been investi-
gated, however. For these, the weighting functions used at the interfaces
should be related to the functions used to weight the differential equations.

A linear combination of weighting functions for each channel, evaluated at
the interfaces, would be a natural choice.

Temporally discontinuous trial-function methods are suitable for
analyzing nonlinear transients. If the trial functions are precalculated, the
"new initial residuals" must be weighted whenever new trial functions are
introduced and/or old trial functions are removed. A good choice of weight-
ing functions is the set of weighting functions to be used throughout the
ensuing time interval. When trial functions are recalculated, as in a quasi-
static approximation, iteration schemes for shape-function recalculation
are generally used. In these cases, the "new initial residuals" vanish
identically, since the correct shape function for the beginning of the ensuing
time interval has been found.

The shape function for the first pass through a time interval in an
iterative quasistatic scheme can be improved if a nodal method is used in-
stead of assuming a constant shape. This will enable the time interval to
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be extended, so that fewer shape recalculations will be needed to analyze a
transient. One such nodal method has been applied in this manner.

The multimode kinetics equations can be integrated using the method
of undetermined parameters. The finite-difference time-step limitation is
overcome when this method is used. Piecewise polynomial functions are
good choices for trial functions.

Space-time iteration using the method of undetermined functions
provides a means of overcoming the obstacle of having to guess at trial
functions, because it finds a solution that is independent of the initial choice
of trial functions. It can be a powerful tool in multidimensional studies.

For continuous synthesis, Galerkin weighting will always give accu-
rate solutions when a good set of trial functions 1s chosen. Partial-current
weighting was superior to surface-cancellation weighting of interface con-
ditions when multichannel synthesis was used. Multichannel synthesis is
an improvement over single-channel synthesis when the choice of trial func-
tions is poor.

In conclusion, weighted-residual methods can be highly successful
when applied to problems of space-dependent reactor dynamics. Some of
these methods are intrinsically better than others. For example, the
discontinuous-trial-function methods offer greater flexibility than
continuous-trial-function methods. Furthermore, the traditional point-
reactor model has the least flexibility, since only one trial function is used
throughout. In each of the methods, however, the degree of success depends
strongly on the ability to choose good trial fynctions.

B. Recommendations for Further Study

The proper role of interface conditions in multichannel synthesis
needs to be much better understood. A sound method of weighting the in-
terface residuals is needed.

The space-time iteration scheme should be pursued, because it is
potentially very useful for analyzing higher dimensional systems. Its use
with temporally discontinuous-trial-function methods also appears to be
promising.

Finally, a topic that was judged to be outside the scope of this
report should be studied. This is the area of finding error bounds for
trial-function methods. When precalculated trial functions are used, there
is no way of knowing how accurate the solution is unless it is compared with
the exact solution. If this mustbe done too often, the utility of the approxima-
tion method would be destroyed.
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APPENDIX A

Linear Dependence

Consider a multichannel synthesis approximation in which two modes
are chosen for each synthesis region. Although the trial functions may be
selected so that they are linearly independent over the entire reactor, they
could be linearly dependent, or "almost" linearly dependent, within a
channel.®® Suppose that the trial functions within a channel are given by
P(x) and 9,(x). To determine the degree of linear dependence between
Uy(x) and 9,(x), the normalized Gram determinant®’ of their inner products
is formed. The procedure is outlined here.

The inner products are given by

Gyj = f valelys(x) dx, g 1 2 (A.1)

The Gram matrix G is given by

Gy Gpp
G = . A2
Gy Gz e
Now, define a diagonal matrix D by
Gl-ll/z 0
D = -1/2 |- A3
0 C1221/2 ( )
The normalized Gram matrix is given by
1 C'lz(GuGzz)-l/2
G' = DGD = b 3 (A.4)
G21(G1,Gap) . 1

Finally, the normalized Gram determinant is

GlZGZI

ST (G0 = e
GIIGZZ

(A.5)

In principle, ¥;(x) and ¥,(x) are linearly dependent if and only if
det(G') = 0. Numerically, however, they may be "almost" linearly depend-
ent if det(G') is very small. Therefore, a criterion for defining "almost"
linear dependence must be defined. One such criterion®® is

det(G') < % (A.6)
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where ¢ is a small positive number chosen beforehand. If Inequality A.6
is satisfied, two possibilities exist. Either one of the trial functions should
be discarded, or the locations of the interfaces should be changed.

The same procedure must be repeated for the weighting functions
within the channel. They must be linearly independent as well, if a solu-
tion is to be obtained. If Galerkin weighting is used, however, a separate
comparison for the weighting functions is not necessary.

Linear dependence can also occur in the integration of the multimode
kinetics equations. The system of equations given by Eq. 6.36 can be
written in the matrix shorthand form

LA = R, (A.7)

where A and R are IK-dimensional column vectors and L is an
IK x IK matrix. If

det(L) = O, (A.8)

the matrix L is singular and the system is linearly dependent.
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APPENDIX B

Selection of Time-step Size

When the method of undetermined parameters is used to solve the
multimode kinetics equations, methods that regulate the size of the time
intervals can be incorporated. Such methods allow large time steps to be
taken when the transient is proceeding slowly, and automatically shorten
the time step when more rapid changes occur. They also ensure a stable
solution for every time step taken. One such method is the time-step
halving technique,!! which is described here.

Consider the time step
Ati = tiyy -t (B-l)

where the solution to the multimode kinetics equations is known at tj, and
desired at tjy,. Two independent solutions to the multimode kinetics equa-
tions are now found. The first of these integrates over the entire time
step, yielding a solution at t = t;,,. The second solution is for only half
the step, yielding a solution at

Aty
t = t: + "
2

Each solution is found by determining a different set of parameters. The
half-step solution is expressed as a different polynomial for each mode.
Suppose each of these polynomials is extrapolated to obtain values at

t = tj;,. These values will not be the same as those found by integration
over the entire time step, but they should be close. The degree of closeness
of these values determines the next step.

To compare the two sets of values, form the following error norm:

K 1/2
2 2
kE—:I Nk,ext - Nk(ti+1)

K

2
Z Nk,ext
k=1

where K is the number of modes, Ny ext is the value of the kth amplitude
function calculated for the half-step and extrapolated to the end of the step,
and Nk(tiﬂ) is the value of the kth amplitude function from the full-step
calculation. The errormorm is now compared with a preselected tolerable
error €;. If € <€, then the amplitude functions Ny (t;;,), k = 1, ..., K, are
acceptable as the solutions, and the multimode kinetics equations can be
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integrated over the next time step. If, in addition, € < Ce,, where C is a
preselected parameter less than unity, the size of the next time step is
doubled. A good value for C is 0.1.

If, on the other hand, € > €, the values Ni(t;4,) are not acceptable,
and the time step is halved. Two independent solutions to the multimode
kinetics equations are again found, this time for the times t = t; + Ati/Z,
and t = t; + Ati/4. Note that the first of these has already been made for
the original comparison, so that it does not have to be repeated. The solu-
tions are again compared as described above. If acceptable values for
Ny (t5 + Ati/Z) are found, the solution at t = t;,, will again be attempted in the
same manner. This time, however, t = t; + Ati/Z is the lower end of the
time step, so that independent solutions are formed for t = t; + (3/4)Ati,
and t = t;j,.

If the values Ny(t;+ Ati/Z) are not acceptable, the time step is
halved again and the calculation is repeated for the quarter-step. The
method continues until an acceptable solution has been found for t = t; .
The procedure then begins anew to determine the Ni(tj4,), etc., until the
end of the transient is reached.
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